【題目】已知集合A={x|x2﹣2x<0},B={x|y=log2(x﹣1)},則A∪B=(
A.(0,+∞)
B.(1,2)
C.(2,+∞)
D.(﹣∞,0)

【答案】A
【解析】解:根據(jù)題意,集合A={x|x2﹣2x<0}={x|0<x<2}=(0,2), 對于函數(shù)y=log2(x﹣1),有x﹣1>0,解可得x>1,
即函數(shù)y=log2(x﹣1)的定義域為(1,+∞),
B為函數(shù)y=log2(x﹣1)的定義域,則B=(1,+∞),
則A∪B=(0,+∞);
故選:A.
【考點精析】掌握集合的并集運算是解答本題的根本,需要知道并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】自從湖南與歐洲的“湘歐快線”開通后,我省與歐洲各國經(jīng)貿(mào)往來日益頻繁,某歐洲客商準備在湖南采購一批特色商品,經(jīng)調(diào)查,用16000元采購A型商品的件數(shù)是用7500元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價多10元.
(1)求一件A,B型商品的進價分別為多少元?
(2)若該歐洲客商購進A,B型商品共250件進行試銷,其中A型商品的件數(shù)不大于B型的件數(shù),且不小于80件.已知A型商品的售價為240元/件,B型商品的售價為220元/件,且全部售出.設購進A型商品m件,求該客商銷售這批商品的利潤v與m之間的函數(shù)關系式,并寫出m的取值范圍;
(3)在(2)的條件下,歐洲客商決定在試銷活動中每售出一件A型商品,就從一件A型商品的利潤中捐獻慈善資金a元,求該客商售完所有商品并捐獻慈善資金后獲得的最大收益.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李老師為了解學生完成數(shù)學課前預習的具體情況,對部分學生進行了跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)李老師一共調(diào)查了多少名同學?
(2)C類女生有名,D類男生有名,將下面條形統(tǒng)計圖補充完整;
(3)為了共同進步,李老師想從被調(diào)查的A類和D類學生中各隨機選取一位同學進行
“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為(
A.4.5
B.6
C.7.5
D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點E在AD上,且AE=2ED.
(Ⅰ)已知點F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面積是梯形ABCD面積的 ,求點E到平面PBC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知橢圓Γ: 經(jīng)過點 ,且離心率為
(1)求橢圓Γ的方程;
(2)直線l與圓O:x2+y2=b2相切于點M,且與橢圓Γ相交于不同的兩點A,B,求|AB|的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線ax+by+c=0與圓O:x2+y2=16相交于兩點M、N,若c2=a2+b2 , P為圓O上任意一點,則 的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某程序框圖如圖所示,則該程序運行后輸出的值是(
A.0
B.﹣1
C.﹣2
D.﹣8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知圓E:(x+ 2+y2=16,點F( ,0),P是圓E上任意一點,線段PF的垂直平分線和半徑PE相交于Q.(Ⅰ)求動點Q的軌跡E的方程; (Ⅱ)直線l過點(1,1),且與軌跡Γ交于A,B兩點,點M滿足 = ,點O為坐標原點,延長線段OM與軌跡Γ交于點R,四邊形OARB能否為平行四邊形?若能,求出此時直線l的方程,若不能,說明理由.

查看答案和解析>>

同步練習冊答案