【題目】如圖,四邊形ABCD是平行四邊形,AB'CABC關(guān)于AC所在的直線對稱ADB'C相交于點O,連接BB'

1請直接寫出圖中所有的等腰三角形不添加字母);

2求證AB'OCDO

【答案】(1) △ABB',AOC和△BB'C;(2)證明見解析.

【解析】(1)根據(jù)題意,結(jié)合圖形可知等腰三角形有△ABB′,△AOC和△BBC;

(2)因為四邊形ABCD是平行四邊形,所以AB=DC,∠ABC=∠D,又因為,△ABC和△ABC關(guān)于AC所在的直線對稱,故AB′=AB,∠ABC=∠ABC,則可證△ABO≌△CDO

:(1ABB',AOC和△BB'C;

2證明在平行四邊形ABCD,AB=DC,ABC=∠D,

由軸對稱知AB'=AB,ABC=∠AB'C,

AB'=CDAB'O=∠D,

在△AB'O和△CDO,

,

AB'OCDO.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點的坐標(biāo)為,點的坐標(biāo)為,點的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接國家衛(wèi)生城市復(fù)檢,某市環(huán)衛(wèi)局準(zhǔn)備購買AB兩種型號的垃圾箱,通過市場調(diào)研得知:購買3A型垃圾箱和2B型垃圾箱共需540元;購買2A型垃圾箱比購買3B型垃圾箱少用160元.

(1)每個A型垃圾箱和B型垃圾箱各多少元?

(2)現(xiàn)需要購買A,B兩種型號的垃圾箱共300個,分別由甲、乙兩人進(jìn)行安裝,要求在12天內(nèi)完成(兩人同時進(jìn)行安裝).已知甲負(fù)責(zé)A型垃圾箱的安裝,每天可以安裝15個,乙負(fù)責(zé)B型垃圾箱的安裝,每天可以安裝20個,生產(chǎn)廠家表示若購買A型垃圾箱不少于150個時,該型號的產(chǎn)品可以打九折;若購買B型垃圾箱超過150個時,該型號的產(chǎn)品可以打八折,若既能在規(guī)定時間內(nèi)完成任務(wù),費用又最低,應(yīng)購買A型和B型垃圾箱各多少個?最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王騎車從甲地到乙地,小李騎車從乙地到甲地,兩人同時出發(fā),沿同一條公路勻速前進(jìn),在出發(fā)2 h時,兩人相距36 km,在出發(fā)3 h時,兩人相遇.設(shè)騎行的時間為xh),兩人之間的距離為ykm),圖中的線段AB表示兩人從出發(fā)到相遇這個過程中yx之間的函數(shù)關(guān)系.

1)求線段AB所表示的yx之間的函數(shù)表達(dá)式;

2)求甲、乙兩地之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,點O為坐標(biāo)原點,直線y=﹣x+4與x軸交于點A,過點A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點B,且點B的橫坐標(biāo)為1.

(1)求a,b的值;

(2)點P是線段AB上一動點(點P不與點A、B重合),過點P作PMOB交第一象限內(nèi)的拋物線于點M,過點M作MCx軸于點C,交AB于點N,過點P作PFMC于點F,設(shè)PF的長為t,MN的長為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,當(dāng)SACN=SPMN時,連接ON,點Q在線段BP上,過點Q作QRMN交ON于點R,連接MQ、BR,當(dāng)MQR﹣BRN=45°時,求點R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經(jīng)過點(1,0)和(0,2).

(1)當(dāng)﹣2x3時,求y的取值范圍;

(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,∠C是其最小的內(nèi)角,如果過點B的一條直線把這個三角形分割成了兩個三角形,其中一個為等腰三角形,另一個為直角三角形,則稱這條直線為ABC關(guān)于點B的奇異分割線.

例如:圖1,在RtABC中,∠A90°,∠C20°,過頂點B的一條直線BDAC于點D,且∠DBC20°,則直線BDABC的關(guān)于點B的奇異分割線.

1)如圖2,在ABC中,若∠A50°,∠C20°.請過頂點B在圖2中畫出ABC關(guān)于點B的奇異分割線BDAC于點D,此時∠ADB   度;

2)在ABC中,∠C30°,若ABC存在關(guān)于點B的奇異分割線,畫出相應(yīng)的ABC及分割線BD,并直接寫出此時∠ABC的度數(shù)(要求在圖中標(biāo)注∠A、∠ABD及∠DBC的度數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)的圖象經(jīng)過點(3,-6)

(1)求這個函數(shù)的表達(dá)式;

(2)在如圖所示的直角坐標(biāo)系中畫出這個函數(shù)的圖象;

(3)判斷點A(4,-2)B(1.5,3)是否在這個函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校以班為單位舉行了書法、版畫、獨唱、獨舞四項預(yù)選賽,參賽總?cè)藬?shù)達(dá)480人之多,下面是七年級一班此次參賽人數(shù)的兩幅不完整的統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:

1)求該校七年一班此次預(yù)選賽的總?cè)藬?shù);

2)補全條形統(tǒng)計圖,并求出書法所在扇形圓心角的度數(shù);

3)若此次預(yù)選賽一班共有2人獲獎,請估算本次比賽全學(xué)年約有多少名學(xué)生獲獎?

查看答案和解析>>

同步練習(xí)冊答案