【題目】今年某市為創(chuàng)評全國文明城市稱號,周末團市委組織志愿者進行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.

抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.

(1)該班男生小剛被抽中 事件,小悅被抽中 事件(不可能必然隨機”);第一次抽取卡片小悅被抽中的概率為 ;

(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結果,并求出小惠被抽中的概率.

【答案】(1)不可能;隨機;;(2)

【解析】1)根據(jù)從女班干部中抽取,由此可知男生小剛被抽中是不可能事件,小悅被抽中是隨機事件,第一次抽取有4種可能,小悅被抽中1種可能,由此即可求得概率;

(2)畫樹狀圖得到所有可能的情況,然后找出符合題意的情況數(shù),利用概率公式進行計算即可得.

(1)因為從女班干部中進行抽取,所以男生小剛被抽中是不可能事件,

小悅被抽中是隨機事件,

第一次抽取有4種可能,小悅被抽中1種可能,所以小悅被抽中的概率為

故答案為:不可能, 隨機 ;

(2)畫樹狀圖如下:

由樹狀圖可知共12種可能,其中小惠被抽中6種可能,

所以小惠被抽中的概率是: .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EF分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請仔細閱讀下面兩則材料,然后解決問題:

材料1:小學時我們學過,任何一個假分數(shù)都可以化為一個整數(shù)與一個真分數(shù)的和的形式,同樣道理,任何一個分子次數(shù)不低于分母次數(shù)的分式都可以化為一個整式與另一個分式的和(或差)的形式,其中分式的分子次數(shù)低于分母次數(shù).

如:.

材料2:對于式子,利用換元法,令.則由于,所以反比例函數(shù)有最大值,且為3.因此分式的最大值為5.

根據(jù)上述材料,解決下列問題:

1)把分式化為一個整式與另一個分式的和的形式,其中分式的分子次數(shù)低于分母次數(shù).

2)當的值變化時,求分式的最大(或最。┲.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個能被13整除的自然數(shù)我們稱為十三數(shù)”,“十三數(shù)的特征是:若把這個自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個數(shù)的差是383﹣357=26,26能被13整除,因此383357十三數(shù)”.

(1)判斷3253254514是否為十三數(shù),請說明理由.

(2)若一個四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個位數(shù)字相同,則稱這個四位數(shù)為間同數(shù)”.

求證:任意一個四位間同數(shù)能被101整除.

若一個四位自然數(shù)既是十三數(shù),又是間同數(shù),求滿足條件的所有四位數(shù)的最大值與最小值之差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每一幅圖中都有若干個大小不同的四邊形,第1幅圖中有1個四邊形,第2幅圖中有3個四邊形,第3幅圖中有5個四邊形…

1)第4幅圖中有 個四邊形,第5幅圖中有 個四邊形;

2)根據(jù)第1幅圖到第5幅圖的規(guī)律,推測第幅圖中有 個四邊形;(用含字母的代數(shù)式表示)

3)如果第幅圖中有4039個四邊形,請你計算的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù) 的圖象與正比例函數(shù) 的圖象相交于(1,),兩點,點在第四象限, 軸,.

(1)的值及點的坐標;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】概念學習

規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.

從三角形不是等腰三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.

理解概念

如圖1,在中,,,請寫出圖中兩對“等角三角形”概念應用

如圖2,在中,CD為角平分線,,

求證:CD的等角分割線.

中,,CD的等角分割線,直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,若OBC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運動,則PF2+PG2的最小值為( 。

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,D在等邊ABC的邊AB上,作DGBC,交AC于點G,點F在邊AC上,連接DF并延長,交BC的延長線于點E,F(xiàn)E=FD.求證:AD=CE.

查看答案和解析>>

同步練習冊答案