【題目】用火柴棒搭的圖形如圖所示

(1)第一個圖5根火柴棒,第二個圖9根火柴棒,第三個圖 根火柴棒;

(2)按此規(guī)律,n個圖有 根火柴棒(用含n的式子表示)

(3)按此規(guī)律,是否存在第n個圖有2018根火柴棒?若存在,請求出n的值;若不存在,請說明理由

【答案】(1)13;(2)4n+1;(3)不存在.

【解析】試題分析:(1)由第1個圖形中火柴棒的數(shù)量5=1+4×1、第2個圖形中火柴棒的數(shù)量9=1+4×2知第3個圖形中火柴棒的數(shù)量為1+4×3=13;

(2)由(1)知,第n個圖形中火柴棒的數(shù)量為1+4n

(3)求出4n+1=2018n的值,看是否為整數(shù)即可得出結(jié)論

試題解析:

解:(1)∵第1個圖形中火柴棒的數(shù)量5=1+4×1,

2個圖形中火柴棒的數(shù)量9=1+4×2,

∴第3個圖形中火柴棒的數(shù)量為1+4×3=13,

故答案為:13;

(2)按此規(guī)律知,第n個圖形中火柴棒的數(shù)量為1+4n

故答案為:4n+1;

(3)不存在,理由如下:

根據(jù)題意,得:4n+1=2018,

解得:n

n應(yīng)為正整數(shù),

n不符合題意,

∴不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,已知∠B和∠C的平分線相交于點F,經(jīng)過點F作DE∥BC,交AB于D,交AC于點E,若BD+CE=9,則線段DE的長為(

A.9
B.8
C.7
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點.且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.

小王同學(xué)探究此問題的方法是,延長FD到點G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;

(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點,且∠EAF=∠BAD上述結(jié)論是否仍然成立,并說明理由;

(3)如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x為何值時,代數(shù)式x21的值是x+1的值的2倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x22x+m10有兩個不相等的實數(shù)根.

1)求m的取值范圍;

2)若m是正整數(shù),求關(guān)于x的方程x22x+m10的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2(k3)xk+20.

(1)若方程有一個根是0,求k的值.

(2)求證:無論k為何值,方程總有兩個實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用因式分解計算:2012-1992=_________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年是襄陽“創(chuàng)建文明城市”工作的第二年,為了更好地做好“創(chuàng)建文明城市”工作,市教育局相關(guān)部門對某中學(xué)學(xué)生“創(chuàng)文”的知曉率,采取隨機抽樣的方法進行問卷調(diào)查,調(diào)查結(jié)果分為“非常了解”, “比校了解”, “基本了解”,和“不了解”四個等級.小輝根據(jù)調(diào)查結(jié)果繪制了如圖所示的統(tǒng)計圖,請根據(jù)提供的信息回答問題:

(1)本次調(diào)查中,樣本容量是_________;

(2)扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)的圓心角的度數(shù)是_______;在該校2000名學(xué)生中隨機提問一名學(xué)生,對“創(chuàng)文”不了解的概率估計值為________

(3)請補全頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時,y的值隨x值的增大而增大.
其中正確的結(jié)論有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案