【題目】已知,m,n是一元二次方程的兩個實數(shù)根,且|m|<|n|,拋物線的圖象經(jīng)過點A(m,0),B(0,n),如圖所示

(1)求這個拋物線的解析式;

(2)設(shè)(1)中的拋物線與x軸的另一個交點為拋物線的頂點為D,試求出點C,D的坐標(biāo),并判斷△BCD的形狀;

(3)點P是直線BC上的一個動點(點P不與點B和點C重合),過點P作x軸的垂線,交拋物線于點M,點Q在直線BC上,距離點P為個單位長度,設(shè)點P的橫坐標(biāo)為t,△PMQ的面積為S,求出S與t之間的函數(shù)關(guān)系式

【答案】(1);(2)△BCD是直角三角形;(3)S=

【解析】

試題分析:(1)先解一元二次方程,然后用待定系數(shù)法求出拋物線解析式;

(2)先解方程求出拋物線與x軸的交點,再判斷出△BOC和△BED都是等腰直角三角形,從而得到結(jié)論;

(3)先求出QF=1,再分兩種情況,當(dāng)點P在點M上方和下方,分別計算即可.

試題解析:解(1)∵,∴,,∵m,n是一元二次方程的兩個實數(shù)根,且|m|<|n|,∴m=﹣1,n=﹣3,∵拋物線的圖象經(jīng)過點A(m,0),B(0,n),∴,∴,∴拋物線解析式為

(2)令y=0,則,∴,,∴C(3,0),∵=,∴頂點坐標(biāo)D(1,﹣4),過點D作DE⊥y軸,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形;

(3)如圖,∵B(0,﹣3),C(3,0),∴直線BC解析式為y=x﹣3,∵點P的橫坐標(biāo)為t,PM⊥x軸,∴點M的橫坐標(biāo)為t,∵點P在直線BC上,點M在拋物線上,∴P(t,t﹣3),M(t,),過點Q作QF⊥PM,∴△PQF是等腰直角三角形,∵PQ=,∴QF=1

當(dāng)點P在點M上方時,即0<t<3時,PM=t﹣3﹣()=,∴S=PM×QF==,如圖3,當(dāng)點P在點M下方時,即t<0或t>3時,PM=﹣(t﹣3)=,∴S=PM×QF=)=

綜上所述,S=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了描述溫州市某一天氣溫變化情況,應(yīng)選擇(  )
A.扇形統(tǒng)計圖
B.折線統(tǒng)計圖
C.條形統(tǒng)計圖
D.直方圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果2x2y3與x2yn+1是同類項,那么n的值是(  )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于A、B、C三點,其中點A的坐標(biāo)為(0,8),點B的坐標(biāo)為(﹣4,0)

(1)求該二次函數(shù)的表達(dá)式及點C的坐標(biāo);

(2)點D的坐標(biāo)為(0,4),點F為該二次函數(shù)在第一象限內(nèi)圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S

①求S的最大值;

②在點F的運(yùn)動過程中,當(dāng)點E落在該二次函數(shù)圖象上時,請直接寫出此時S的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( 。

A. a4÷a3aB. a24a6C. 2a2a21D. 3a32a26a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的對話。

小紅:“售貨員,我要買些梨。”

售貨員說:“小紅,你上次買的那種梨賣完了,我們還沒來得及進(jìn)貨,我建議你這次買些新進(jìn)的蘋果,價格比梨貴一點,不過這批蘋果的味道挺好喲!”

小紅:“好,這次和上次一樣,也花30元!

對照前后兩次的電腦小票,小紅發(fā)現(xiàn),每千克蘋果的單價是梨的1.5倍,買的蘋果的重量比梨輕2.5Kg。

試根據(jù)上面的對話和小紅的發(fā)現(xiàn),分別求出蘋果和梨的單價。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、BC、D四位員工做一項工作,每天必須是三位員工同時做,另一位員工休息,當(dāng)完成這項工作時,D做了8天,比其他任何人都多,B做了5天,比其他任何人都少,那么A做了_____天.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三角形三個內(nèi)角度數(shù)的比為235,那么這個三角形是(

A.直角三角形B.銳角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)車間有50名工人,某一天他們生產(chǎn)的機(jī)器零件個數(shù)統(tǒng)計如表:

零件個數(shù)(個)

6

7

8

人數(shù)(人)

15

22

10

表中表示零件個數(shù)的數(shù)據(jù)中,眾數(shù)、中位數(shù)分別是( 。

A.7個、7B.6個、7C.5個、6D.8個、6

查看答案和解析>>

同步練習(xí)冊答案