如圖,AC=
AB
AB
﹢BC=AD-
CD
CD
,AC﹢BD-BC=
AD
AD
分析:利用線段的和差求解.
解答:解:AC=AB+BC,AC=AD-CD;AC+BD-BC=AD.
故答案為AB,CD,AD.
點評:本題考查了兩點間的距離:連接兩點間的線段的長度叫兩點間的距離.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(1)已知△ABC中,D、E分別是邊AB、AC上的點,∠A=80°,∠C=70°,∠ADE=30°.求證:DE∥BC.
(2)閱讀并補全下列命題的證明過程:
求證:在同一平面內(nèi),如果兩條直線都和第三條直線垂直,那么這兩條直線互相平行.
已知:如圖,直線AB、CD、EF在同一平面內(nèi),AB⊥EF于點M,CD⊥EF于點N.
求證:
AB∥CD
AB∥CD

證明:∵AB⊥EF(已知),
∴∠AME=90°(垂直的定義).
∵CD⊥EF(已知),
∴∠CNE=90°(垂直的定義).
∵∠
AME
AME
=∠
CNE
CNE

AB
AB
CD
CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AD平分∠BAC.
(1)在圖1中,作DE⊥AB,DF⊥AC,
∵AD平分∠BAC,∴
DE
DE
=
DF
DF

而S△ABD=
1
2
AB
AB
×
DE
DE
,
S△ACD=
1
2
AC
AC
×
DF
DF

則S△ABD:S△ACD=
AB
AB
AC
AC

(2)在圖2中,作AP⊥BC而S△ABD=
1
2
BD
BD
×
AP
AP
,S△ACD=
1
2
CD
CD
×
AP
AP
,
則S△ABD:S△ACD=
BD
BD
CD
CD
;
(3)由(1)、(2)可得“角平分線”第二性質(zhì)
AB
AB
AC
AC
=
BD
BD
CD
CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C為線段AB上一點,P是線段AC的中點,Q是線段CB的中點,若PQ=2.8cm,求AB的長.
解:∵P是AB的中點
PC=
1
2
AC
AC

∵Q是CB的中點
CQ=
1
2
BC
BC

PC+CQ=
1
2
(AC+BC)
(AC+BC)

∵PC+CQ=
PQ
PQ
,AC+CB=
AB
AB

PQ=
1
2
AB
AB

∵PQ=2.8cm
∴AB=
5.6cm
5.6cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀:
如圖,已知在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,AC=A′C′.那么△ABC≌△A′B′C′.

說明過程如下:
把△ABC放到△A′B′C′上,使∠A的頂點與∠A′的頂點重合;由于∠A=∠A′,因此可以使射線AB、AC分別落在射線A′B′、A′C′上.因為AB=A′B′,AC=A′C′,所以點B、C分別與點B′、C′重合,這樣△ABC和△A′B′C′重合,即△ABC≌△A′B′C′.
于是,得全等三角形判定方法1:在兩個三角形中,如果有兩條邊及它們的夾角對應相等,那么這兩個三角形全等(簡記為S.A.S).
請完成下面問題的填空:
如圖,已知在△ABC和△A′B′C′中,∠A=∠A′,AB=A′B′∠B=∠B′.
那么△ABC≌△A′B′C′.  

說明過程如下:
把△ABC放到△A′B′C′上,因為AB=A′B′,可以使
AB
AB
A′B′
A′B′
重合,并使點C與C′在AB(A′B′)的同一側(cè),這時點A與點A′重合,點
C
C
與點
C′
C′
重合.由于∠A=∠A′,因此射線
AC
AC
與射線
A′C′
A′C′
疊合;由于
∠B=∠B′,因此射線
BC
BC
與射線
B′C′
B′C′
疊合.于是點C(射線AC與BC的交點)與點C(射線A′C′與B′C′的交點)重合.這樣
△ABC
△ABC
△A′B′C′
△A′B′C′
重合,即△ABC≌△A′B′C′.
于是,得全等三角形判定方法2:在兩個三角形中,
如果兩角和它們的夾邊對應相等,那么這兩個三角形全等(簡記為ASA)
如果兩角和它們的夾邊對應相等,那么這兩個三角形全等(簡記為ASA)

查看答案和解析>>

同步練習冊答案