如圖,直線AB,BC,CD分別與⊙O相切于E,F(xiàn),G,且AB∥CD,若OB=6cm,OC=8cm,則∠BOC=    度,⊙O的半徑是    cm,BE+CG=    cm.
【答案】分析:連接OF,根據(jù)切線長定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;再根據(jù)平行線性質得到∠BOC為直角,由勾股定理可求得BC的長,最后由三角形面積公式即可求得OF的長,進而由切線長定理即可得到BE+CG的長.
解答:解:連接OF;
根據(jù)切線長定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;
∵AB∥CD
∴∠ABC+∠BCD=180°,
∴∠OBE+∠OCF=90°,
∴∠BOC=90°;
∵OB=6cm,OC=8cm,
∴BC=10cm,
∵OF⊥BC,
∴OF==4.8cm,
∴BE+CG=BC=10cm.
點評:此題主要是綜合運用了切線長定理和切線的性質定理.注意:求直角三角形斜邊上的高時,可以借助直角三角形的面積進行計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線AB,BC,CD分別與⊙O相切于E,F(xiàn),G,且AB∥CD,若OB=6cm,OC=8cm,則∠BOC=
 
度,⊙O的半徑是
 
cm,BE+CG=
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,直線AB,BC,CD分別與⊙O相切于E,F(xiàn),G,且AB∥CD,若OB=6cm,OC=8cm,則∠BOC=________度,⊙O的半徑是________cm,BE+CG=________cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年江蘇省常州市溧陽市光華中學九年級(上)第二次段考數(shù)學試卷(解析版) 題型:填空題

如圖,直線AB,BC,CD分別與⊙O相切于E,F(xiàn),G,且AB∥CD,若OB=6cm,OC=8cm,則∠BOC=    度,⊙O的半徑是    cm,BE+CG=    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:《第24章 圓》2009年自主學習達標檢測2(解析版) 題型:填空題

如圖,直線AB,BC,CD分別與⊙O相切于E,F(xiàn),G,且AB∥CD,若OB=6cm,OC=8cm,則∠BOC=    度,⊙O的半徑是    cm,BE+CG=    cm.

查看答案和解析>>

同步練習冊答案