把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點(diǎn)D與三角板ABC的斜邊中點(diǎn)O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動(dòng),讓三角板DEF繞點(diǎn)O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點(diǎn)P,射線DF與線段BC相交于點(diǎn)Q.
(1)如圖1,當(dāng)射線DF經(jīng)過點(diǎn)B,即點(diǎn)Q與點(diǎn)B重合時(shí),易證△APD∽△CDQ.此時(shí),AP•CQ______.
(2)將三角板DEF由圖1所示的位置繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由.
(3)在(2)的條件下,設(shè)CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.(圖2,圖3供解題用)
【答案】分析:(1)可通過證△APD∽△CDQ來求解.
(2)不會(huì)改變,關(guān)鍵是還是證△APD∽△CDQ,已知了一組45°角,關(guān)鍵是證(1)中的∠APD=∠QDC,由于圖2由圖1旋轉(zhuǎn)而得,根據(jù)旋轉(zhuǎn)的性質(zhì)可設(shè)旋轉(zhuǎn)角為α,那么∠APD=90°-α,∠CDQ=90°-α,因此兩角相等.由此可證得兩三角形相似.因此結(jié)論不變.
(3)本題分類兩種情況進(jìn)行討論:①當(dāng)0°<a<45°時(shí)②當(dāng)45°≤a<90°時(shí).
解答:解:(1)∵∠A=∠C=45°,∠APD=∠QDC=90°,
∴△APD∽△CDQ.
∴AP:CD=AD:CQ.
∴即AP×CQ=AD×CD,
∵AB=BC=4,
∴斜邊中點(diǎn)為O,
∴AP=PD=2,
∴AP×CQ=2×4=8;
故答案為:8.

(2)AP•CQ的值不會(huì)改變.
理由如下:
∵在△APD與△CDQ中,∠A=∠C=45°,
∠APD=180°-45°-(45°+a)=90°-a,
∠CDQ=90°-a,
∴∠APD=∠CDQ.
∴△APD∽△CDQ.
,
∴AP•CQ=AD•CD=AD2=(AC)2=8.

(3)情形1:當(dāng)0°<a<45°時(shí),2<CQ<4,即2<x<4,
此時(shí)兩三角板重疊部分為四邊形DPBQ,過D作DG⊥AP于G,DN⊥BC于N,
∴DG=DN=2
由(2)知:AP•CQ=8得AP=,
于是y=AB•BC=CQ•DN-AP•DG,
=8-x-(2<x<4),
情形2:當(dāng)45°≤a<90°時(shí),0<CQ≤2時(shí),即0<x≤2,此時(shí)兩三角板重疊部分為△DMQ,
由于AP=,PB=-4,易證:△PBM∽△DNM,
,即
解得,

于是
綜上所述,當(dāng)2<x<4時(shí),
當(dāng)0<x≤2時(shí),
點(diǎn)評:本題主要考查了相似三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)以及二次函數(shù)等知識的綜合應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊斜邊長度相等的等腰直角三角紙板如圖(1)擺放,若把圖(1)中的△BCN逆時(shí)針旋轉(zhuǎn)90°,得到圖(2),圖(2)中除△ABC≌△CED、△BCN≌△ACF外,你還能找到一對全等的三角形嗎?寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

將兩塊斜邊長度相等的等腰直角三角紙板如圖(1)擺放,若把圖(1)中的△BCN逆時(shí)針旋轉(zhuǎn)90°,得到圖(2),圖(2)中除△ABC≌△CED、△BCN≌△ACF外,你還能找到一對全等的三角形嗎?寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇期末題 題型:解答題

把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點(diǎn)D與三角扳ABC的斜邊中點(diǎn)O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動(dòng),讓三角扳DEF繞點(diǎn)O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點(diǎn)P,射線DF與線段BC相交于點(diǎn)Q。

(1)如圖1,當(dāng)射線DF經(jīng)過點(diǎn)B,即點(diǎn)Q與點(diǎn)B重合時(shí),易證△APD~△CDQ。此時(shí),AP·CQ=______。
(2)將三角板DEF由圖1所示的位置繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為a.其中 0°<a<90°,問AP·CQ的值是否改變?說明你的理由。
(3)在(2)的條件下,設(shè)CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式。(圖2,圖3供解題用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年湖北省荊州市中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

將兩塊斜邊長度相等的等腰直角三角紙板如圖(1)擺放,若把圖(1)中的△BCN逆時(shí)針旋轉(zhuǎn)90°,得到圖(2),圖(2)中除△ABC≌△CED、△BCN≌△ACF外,你還能找到一對全等的三角形嗎?寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省荊州市沙市區(qū)中考數(shù)學(xué)綜合練習(xí)卷(二)(解析版) 題型:解答題

將兩塊斜邊長度相等的等腰直角三角紙板如圖(1)擺放,若把圖(1)中的△BCN逆時(shí)針旋轉(zhuǎn)90°,得到圖(2),圖(2)中除△ABC≌△CED、△BCN≌△ACF外,你還能找到一對全等的三角形嗎?寫出你的結(jié)論并說明理由.

查看答案和解析>>

同步練習(xí)冊答案