在分式數(shù)學(xué)公式中,x=________時,分式無意義;當(dāng)x=________時,分式的值為零.

-1    1
分析:分式無意義的條件為x+1=0,所以x=-1;當(dāng)x+1≠0,|x|-1=0時分式的值為零即,x≠-1,x=±1,所以x=1
解答:根據(jù)題意得:x+1=0,所以x=-1,當(dāng)x=-1時,分式無意義.
當(dāng)x+1≠0,|x|-1=0時分式的值為零即,x≠-1,x=±1,所以x=1.
點評:此題主要考查了分式的意義和分式的值為零的條件,要求掌握.對于任意一個分式,分母都不能為0,否則分式無意義.
解此類問題,只要令分式中分母等于0,求得字母的值即可.
分式值為0的條件:在分母不等于0的前提下,分子等于0,則分?jǐn)?shù)值為0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道假分?jǐn)?shù)可以化為帶分?jǐn)?shù).例如:
8
3
=2+
2
3
=2
2
3
.在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.例如:
x-1
x+1
,
x2
x-1
這樣的分式就是假分式;
3
x+1
,
2x
x2+1
這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即整式與真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
;
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1+
1
x-1

(1)將分式
x-1
x+2
化為帶分式;
(2)若分式
2x-1
x+1
的值為整數(shù),求x的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù).例如:
8
3
=2+
2
3
=2
2
3
.在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.例如:
x-1
x+1
,
x2
x-1
這樣的分式就是假分式;
3
x+1
,
2x
x2+1
這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
; 
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1
+
1
x-1

(1)將分式
x-1
x+2
化為帶分式;
(2)若分式
2x-1
x+1
的值為整數(shù),求x的整數(shù)值;
(3)求函數(shù)y=
2x2-1
x+1
圖象上所有橫縱坐標(biāo)均為整數(shù)的點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

在分式數(shù)學(xué)公式中,x=________時,分式的值是0;x=________時,分式無意義;x=________時,分式的值是1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù).例如:
8
3
=2+
2
3
=2
2
3
.在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.例如:
x-1
x+1
,
x2
x-1
這樣的分式就是假分式;
3
x+1
,
2x
x2+1
這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
; 
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1
+
1
x-1

(1)將分式
x-1
x+2
化為帶分式;
(2)若分式
2x-1
x+1
的值為整數(shù),求x的整數(shù)值;
(3)求函數(shù)y=
2x2-1
x+1
圖象上所有橫縱坐標(biāo)均為整數(shù)的點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案