作業(yè)寶如圖,在△ABC中,AB=AC,∠A=36°,BD是角平分線.
求證:(1)△ABC∽△BCD;
(2)BC2=AC•CD.

證明:(1)解:∵AB=AC,∠A=36°,
∴∠C=∠ABC=(180°-∠A)=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°=∠A,
∴AD=BD,
∵∠C=72°,∠CBD=36°,
∴由三角形內(nèi)角和定理得:∠BDC=72°=∠C,
∴BD=BC=AD,
∵∠C=∠C,∠CBD=∠A,
∴△ABC∽△BDC;

(2)由(1)知,△ABC∽△BDC.則=,即BC2=AC•CD.
分析:(1)根據(jù)已知條件得到AD=BD=BC,則易證△ABC∽△BDC;
(2)通過(1)中的相似三角形的對(duì)應(yīng)邊成比例來證明.
點(diǎn)評(píng):本題考查了三角形的內(nèi)角和定理,等腰三角形的判定,角平分線定義,相似三角形的性質(zhì)和判定,黃金分割等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案