如圖,將兩張長方形的紙片如圖擺放,根據(jù)圖中的數(shù)據(jù),可求出圖中的點P到AB的距離是________cm.

10
分析:首先作出PN⊥MC,PW⊥AB,利用三角函數(shù)關系得出PC的長,進而得出PN的長,即可得出答案.
解答:解:過點P作PN⊥MC,PW⊥AB,
∵四邊形ABCM是矩形,
∴N、P、W在一條直線上,
∵AB=8cm,∠MCP=30°,
∴cos30°==,
∴PC=12cm,
∴sin30°==,
∴NP=6cm,
∵AM=16cm,
∴PW=16-NP=10cm,
即點P到AB的距離是10cm.
故答案為:10.
點評:此題主要考查了解直角三角形的應用,根據(jù)已知得出PC的長進而求出NP的長是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,將兩張長方形的紙片如圖擺放,根據(jù)圖中的數(shù)據(jù),可求出圖中的點P到AB的距離是
10
10
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將一張長方形紙片沿對角線剪開,得到兩張全等三角形紙片,再將這兩張三角形紙擺放成如圖③的形式,使點B、F、C、D在同一條直線上.在圖③中
(1)試說明AB⊥ED. 
(2)若PB=BC,求證:PD=CA.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將一張長方形大鐵皮切割(切痕為虛線)成九塊,其中有兩塊是邊長都為a厘米的大正方形,兩塊是邊長都為b厘米的小正方形,且a>b.
(1)這張長方形大鐵皮長為
(2a+b)
(2a+b)
厘米,寬為
(a+2b)
(a+2b)
厘米(用含a、b的代數(shù)式表示);
(2)①求這張長方形大鐵皮的面積(用含a、b的代數(shù)式表示);
②若最中間的小長方形的周長為22厘米,大正方形與小正方形的面積之差為33厘米2,試求a和b的值,并求這張長方形大鐵皮的面積;
(3)現(xiàn)要從切塊中選擇5塊,恰好焊接成一個無蓋的長方體盒子,共有哪幾種方案可供選擇(畫出示意圖)?按哪種方案焊接的長方體盒子的體積最大?試說明理由.(接痕的大小和鐵皮的厚度忽略不計)

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年重慶市南開中學九年級(上)月考數(shù)學試卷(10月份)(解析版) 題型:填空題

如圖,將兩張長方形的紙片如圖擺放,根據(jù)圖中的數(shù)據(jù),可求出圖中的點P到AB的距離是    cm.

查看答案和解析>>

同步練習冊答案