已知,當(dāng)時,的最小值是____________.

解析試題分析:分別把代入,求得對應(yīng)的y的值,即可得到結(jié)果.
中,當(dāng)時,,當(dāng)時,
則當(dāng)時,的最小值是.
考點:一次函數(shù)的性質(zhì)
點評:解答本題的關(guān)鍵是熟練掌握一次函數(shù)的性質(zhì):當(dāng)時,y隨x的增大而增大;當(dāng)時,y隨x的增大而減小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果兩個正數(shù),即,有下面的不等式:

         當(dāng)且僅當(dāng)時取到等號

我們把叫做正數(shù)的算術(shù)平均數(shù),把叫做正數(shù)的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:

例:已知,求函數(shù)的最小值。

解:令,則有,得,當(dāng)且僅當(dāng)時,即時,函數(shù)有最小值,最小值為。

根據(jù)上面回答下列問題

1.已知,則當(dāng)        時,函數(shù)取到最小值,最小值

為         

2.用籬笆圍一個面積為的矩形花園,問這個矩形的長、寬各為多少時,所

用的籬笆最短,最短的籬笆周長是多少

3.已知,則自變量取何值時,函數(shù)取到最大值,最大值為多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果兩個正數(shù),即,有下面的不等式:
  當(dāng)且僅當(dāng)時取到等號
我們把叫做正數(shù)的算術(shù)平均數(shù),把叫做正數(shù)的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:
例:已知,求函數(shù)的最小值。
解:令,則有,得,當(dāng)且僅當(dāng)時,即時,函數(shù)有最小值,最小值為。
根據(jù)上面回答下列問題
【小題1】已知,則當(dāng)        時,函數(shù)取到最小值,最小值
為         
【小題2】用籬笆圍一個面積為的矩形花園,問這個矩形的長、寬各為多少時,所
用的籬笆最短,最短的籬笆周長是多少
【小題3】已知,則自變量取何值時,函數(shù)取到最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年天津市北辰區(qū)五校八年級12月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題

已知,當(dāng)時,的最小值是____________.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省中考考前模擬測試數(shù)學(xué)卷(3) 題型:解答題

如果兩個正數(shù),即,有下面的不等式:

          當(dāng)且僅當(dāng)時取到等號

我們把叫做正數(shù)的算術(shù)平均數(shù),把叫做正數(shù)的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:

例:已知,求函數(shù)的最小值。

解:令,則有,得,當(dāng)且僅當(dāng)時,即時,函數(shù)有最小值,最小值為

根據(jù)上面回答下列問題

1.已知,則當(dāng)         時,函數(shù)取到最小值,最小值

為         

2.用籬笆圍一個面積為的矩形花園,問這個矩形的長、寬各為多少時,所

用的籬笆最短,最短的籬笆周長是多少

3.已知,則自變量取何值時,函數(shù)取到最大值,最大值為多少?

 

查看答案和解析>>

同步練習(xí)冊答案