在(1)數(shù)學(xué)公式,(2)數(shù)學(xué)公式,(3)數(shù)學(xué)公式這三組數(shù)值中,______是方程x-3y=9的解,______是方程2x+y=4的解,______是方程組數(shù)學(xué)公式的解.

解:(1)由方程x-3y=9
得x=9+3y
觀察代入三個(gè)解,(1)和(2)適合,
因此,(1)和(2)是方程x-3y=9的解;

(2)由方程2x+y=4
得y=4-2x
觀察代入三個(gè)解,(1)和(3)適合,
因此(1)和(3)是方程2x+y=4的解;

(3)顯然兩個(gè)方程的公共解即為方程組的解.
因?yàn)椋?)和(2)是方程x-3y=9的解;
(1)和(3)是方程2x+y=4的解;
所以(1)是方程組的解.
分析:只要適合方程的未知數(shù)的值即為方程的一個(gè)解;適合方程組的每一個(gè)方程的未知數(shù)的值即為方程組的一個(gè)解.只需把三個(gè)解觀察代入方程,即可判斷.
點(diǎn)評(píng):要理解方程的解和方程組的解的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)P(a,b),M(c,d)是反比例函數(shù)y=
1
x
在第一象限內(nèi)的圖象上關(guān)于直線y=x對(duì)稱的兩點(diǎn),過(guò)P、M作坐標(biāo)軸的垂線(如圖),垂足為Q、N,若∠MON=30°,則
b
a
+
d
c
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,正方形ABCD的面積為18,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為(  )
A、3
2
B、9
2
C、6
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,點(diǎn)D,E分別是AB,AC邊的中點(diǎn),若把△ADE繞著點(diǎn)E順時(shí)針旋轉(zhuǎn)180°得到△CFE.
(1)請(qǐng)指出圖中哪些線段與線段CF相等;
(2)試判斷四邊形DBCF是怎樣的四邊形,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在等腰梯形ABCD中,AD∥BC,E是BC的中點(diǎn),連接AE,DE,AE與DE相等嗎?
(1)請(qǐng)說(shuō)明理由.
(2)上題中,若添加條件BC=2AD,圖中有平行四邊形嗎?請(qǐng)指出來(lái),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)E在正方形ABCD的邊CD上運(yùn)動(dòng),AC與BE交于點(diǎn)F.
(1)如圖1,當(dāng)點(diǎn)E運(yùn)動(dòng)到DC的中點(diǎn)時(shí),求△ABF與四邊形ADEF的面積之比;
(2)如圖2,當(dāng)點(diǎn)E運(yùn)動(dòng)到CE:ED=2:1時(shí),求△ABF與四邊形ADEF的面積之比;
(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到CE:ED=3:1時(shí),寫出△ABF與四邊形ADEF的面積之比;當(dāng)點(diǎn)E運(yùn)動(dòng)到CE:ED=n:1(n是正整數(shù))時(shí),猜想△ABF與四邊形ADEF的面積之比(只寫結(jié)果,不要求寫出計(jì)算過(guò)程);
(4)請(qǐng)你利用上述圖形,提出一個(gè)類似的問(wèn)題
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案