【題目】學校科技小組研制了一套信號發(fā)射、接收系統(tǒng).在對系統(tǒng)進行測試中,如圖,小明從路口A處出發(fā),沿東南方向筆直公路行進,并發(fā)射信號,小華同時從A處出發(fā),沿西南方向筆直公路行進,并接收信號.若小明步行速度為39米/分,小華步行速度為52米/分,恰好在出發(fā)后30分時信號開始不清晰.
(1)你能求出他們研制的信號收發(fā)系統(tǒng)的信號傳送半徑嗎?(以信號清晰為界限)
(2)通過計算,你能找到題中數(shù)據(jù)與勾股數(shù)3、4、5的聯(lián)系嗎?試從中尋找求解決問題的簡便算法.
【答案】(1)1950米;(2)詳見解析.
【解析】試題分析:
(1)設30分鐘時,小明剛好到達C處,小華剛好到達B處,連接BC,則由已知易得AC=,AB=,∠BAC=90°,由勾股定理在Rt△ABC中計算出BC的長就可得收發(fā)系統(tǒng)的傳送半徑;
(2)由(1)可知:數(shù)據(jù)是一組勾股數(shù),而,由此可知勾股數(shù)“3、4、5”的整數(shù)倍也是一組“勾股數(shù)”,這樣我們就可以直接由“”來計算本題第(1)問中的傳送半徑了.
試題解析:
(1)如圖,設30分鐘時,小明剛好到達C處,小華剛好到達B處,連接BC,則由已知易得AC=,AB=,∠BAC=90°,
∴BC=(米),即信號傳送半徑為1950米;
(2)∵小明所走的路程為39×30=3×13×30,小華所走的路程為52×30=4×13×30,30分鐘時,兩人間的距離為: ,
∴結(jié)合(1)可知勾股數(shù)3、4、5的倍數(shù)仍能構(gòu)成一組勾股數(shù),
∴可用5×13×30=1950(米)來計算傳送半徑,這樣比用勾股定理計算要簡單一些.
科目:初中數(shù)學 來源: 題型:
【題目】為給同學們創(chuàng)造更好的讀書條件,學校準備新建一個長度為L的度數(shù)長廊,并準備用若干塊帶有花紋和沒有花紋的兩種規(guī)格、大小相同的正方形地面磚搭配在一起,按如圖所示的規(guī)律拼成圖案鋪滿長廊,已知每個小正方形地面磚的邊長均為0.6m.
(1)按圖示規(guī)律,第一圖案的長度L1=m;第二個圖案的長度L2=m.
(2)請用代數(shù)式表示帶有花紋的地面磚塊數(shù)n與走廊的長度Ln之間的關系.
(3)當走廊的長度L為36.6m時,請計算出所需帶有花紋圖案的瓷磚的塊數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2+ax+a﹣2=0
(1)若該方程的一個根為1,求a的值及該方程的另一根;
(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).
(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN,ND,DH之間的數(shù)量關系,并說明理由.
(3)在圖①中,連接BD分別交AE,AF于點M,N,若EG=4,GF=6,BM=3,求AG,MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】清朝康熙皇帝是我國歷史上對數(shù)學很有興趣的帝王近日,西安發(fā)現(xiàn)了他的數(shù)學專著,其中有一文《積求勾股法》,它對“三邊長為3、4、5的整數(shù)倍的直角三角形,已知面積求邊長”這一問題提出了解法:“若所設者為積數(shù)(面積),以積率六除之,平方開之得數(shù),再以勾股弦各率乘之,即得勾股弦之數(shù)”.用現(xiàn)在的數(shù)學語言表述是:“若直角三角形的三邊長分別為3、4、5的整數(shù)倍,設其面積為S,則第一步: =m;第二步: =k;第三步:分別用3、4、5乘以k,得三邊長”.
(1)當面積S等于150時,請用康熙的“積求勾股法”求出這個直角三角形的三邊長;
(2)你能證明“積求勾股法”的正確性嗎?請寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一根長21米的鐵絲,在一個圓盤上繞了3圈,還多2.16米,這個圓盤的半徑是(取π=3.14)( )
A. 0.5米 B. 1米 C. 1.5米 D. 2米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】a是一個兩位數(shù),b是一個三位數(shù),把a放在b的右邊組成一個五位數(shù),用a,b的代數(shù)式表示所得的五位數(shù)是( )
A. ba B. 10b+a C. 10000b+a D. 100b+a
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com