已知:如圖,在平面直角坐標(biāo)系中,拋物線過(guò)點(diǎn)A(6,0)和點(diǎn)B(3,).

(1)求拋物線的解析式;

(2)將拋物線沿x軸翻折得拋物線,求拋物線的解析式;

(3)在(2)的條件下,拋物線上是否存在點(diǎn)M,使相似?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說(shuō)明理由.

 

【答案】

(1) ;(2);(3),,

【解析】

試題分析:(1)把A、B兩點(diǎn)坐標(biāo)代入y1=ax2+bx,求得a、b的值,從而確定y1的解析式;

(2)將拋物線沿x軸翻折后,仍過(guò)點(diǎn)O(0,0),A(6,0),還過(guò)點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn).從而可求y2的解析式;

(3)過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,易證是頂角為120º的等腰三角形.分兩種情況討論:①當(dāng)點(diǎn)M在x軸下方時(shí),就是,此時(shí)點(diǎn)M的坐標(biāo)為.②當(dāng)點(diǎn)M在x軸上方時(shí),此時(shí)點(diǎn)M的坐標(biāo)為(9,)、

試題解析:(1)依題意,得   解得

∴拋物線的解析式為

(2)將拋物線沿x軸翻折后,仍過(guò)點(diǎn)O(0,0),A(6,0),還過(guò)點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)

設(shè)拋物線的解析式為,

    解得

∴拋物線的解析式為

(3)過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,

則有

∵OC=3,OA=6,

∴AC=3.

,

∴OB=AB.

是頂角為120º的等腰三角形.

分兩種情況:

①當(dāng)點(diǎn)M在x軸下方時(shí),就是,此時(shí)點(diǎn)M的坐標(biāo)為

②當(dāng)點(diǎn)M在x軸上方時(shí),假設(shè),則有AM=OA=6,

過(guò)點(diǎn)M作MD⊥x軸于點(diǎn)D,則

.  ∴OD=9.

而(9,)滿足關(guān)系式,

即點(diǎn)M在拋物線上.

根據(jù)對(duì)稱性可知,點(diǎn)也滿足條件.

綜上所述,點(diǎn)M的坐標(biāo)為,

考點(diǎn):二次函數(shù)綜合題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫(xiě)出滿足條件的一個(gè)答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆重慶萬(wàn)州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開(kāi)始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開(kāi)始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動(dòng)過(guò)程中, 四邊形OPEM是什么四邊形?請(qǐng)說(shuō)明理由。若
用y表示四邊形OPEM的面積 ,直接寫(xiě)出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?
若有,請(qǐng)求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶______個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫(xiě)出滿足條件的一個(gè)答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案