如圖所示,已知四邊形ABCD的四個(gè)頂點(diǎn)都在⊙O上,∠BCD=120°,則∠B0D=
120°
120°
分析:由四邊形ABCD的四個(gè)頂點(diǎn)都在⊙O上,∠BCD=120°,根據(jù)圓的內(nèi)接四邊形,可求得∠A的度數(shù),又由圓周角定理,即可求得答案.
解答:解:∵∠BCD=120°,
∴∠A=180°-∠BCD=60°,
∴∠BOD=2∠A=120°.
故答案為:120°.
點(diǎn)評(píng):此題考查了圓周角定理與圓的內(nèi)接四邊形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

53、如圖所示,已知四邊形ABCD是平行四邊形,在AB的延長(zhǎng)線上截取BE=AB,BF=BD,連接CE,DF,相交于點(diǎn)M.求證:CD=CM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廈門)如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=
7
,
DE
的長(zhǎng)是
3
π
3
.求證:直線BC與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=
7
,
DE
的長(zhǎng)是
3
π
3

(1)求⊙O的半徑;
(2)直線BC與⊙O是否相切?若不相切說(shuō)明理由,若相切給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知四邊形ABCD是等腰梯形,DC∥AB,若AD=BC=5,CD=2,AB=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案