精英家教網 > 初中數學 > 題目詳情
(2010•茂名)如圖,邊長為1的正方形ABCD繞點A逆時針旋轉45度后得到正方形AB′C′D′,邊B′C′與DC交于點O,則四邊形AB′OD的周長是( )

A.2
B.3
C.
D.1+
【答案】分析:當AB繞點A逆時針旋轉45度后,剛回落在正方形對角線AC上,可求三角形與邊長的差B′C,再根據等腰直角三角形的性質,勾股定理可求B′O,OD,從而可求四邊形AB′OD的周長.
解答:解:連接B′C,
∵旋轉角∠BAB′=45°,∠BAC=45°,
∴B′在對角線AC上,
∵AB=AB′=1,用勾股定理得AC=,
∴B′C=-1,
在等腰Rt△OB′C中,OB′=B′C=-1,
在直角三角形OB′C中,由勾股定理得OC=-1)=2-,
∴OD=1-OC=-1
∴四邊形AB′OD的周長是:2AD+OB′+OD=2+-1+-1=2
故選A.
點評:本題考查了正方形的性質,旋轉的性質,特殊三角形邊長的求法.連接B′C構造等腰Rt△OB′C是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2010•茂名)如圖,在直角坐標系xOy中,正方形OCBA的頂點A,C分別在y軸,x軸上,點B坐標為(6,6),拋物線y=ax2+bx+c經過點A,B兩點,且3a-b=-1.
(1)求a,b,c的值;
(2)如果動點E,F(xiàn)同時分別從點A,點B出發(fā),分別沿A→B,B→C運動,速度都是每秒1個單位長度,當點E到達終點B時,點E,F(xiàn)隨之停止運動,設運動時間為t秒,△EBF的面積為S.
①試求出S與t之間的函數關系式,并求出S的最大值;
②當S取得最大值時,在拋物線上是否存在點R,使得以E,B,R,F(xiàn)為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省茂名市中考數學試卷(解析版) 題型:解答題

(2010•茂名)如圖,在直角坐標系xOy中,正方形OCBA的頂點A,C分別在y軸,x軸上,點B坐標為(6,6),拋物線y=ax2+bx+c經過點A,B兩點,且3a-b=-1.
(1)求a,b,c的值;
(2)如果動點E,F(xiàn)同時分別從點A,點B出發(fā),分別沿A→B,B→C運動,速度都是每秒1個單位長度,當點E到達終點B時,點E,F(xiàn)隨之停止運動,設運動時間為t秒,△EBF的面積為S.
①試求出S與t之間的函數關系式,并求出S的最大值;
②當S取得最大值時,在拋物線上是否存在點R,使得以E,B,R,F(xiàn)為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2010•茂名)如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點D作DE垂直O(jiān)A的延長線交于點E.
(1)證明:△OAB∽△EDA;
(2)當a為何值時,△OAB與△EDA全等?請說明理由,并求出此時點C到OE的距離.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省茂名市中考數學試卷(解析版) 題型:填空題

(2010•茂名)如圖,已知AD為⊙O的切線,⊙O的直徑是AB=2,弦AC=1,則∠CAD=    度.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省茂名市中考數學試卷(解析版) 題型:選擇題

(2010•茂名)如圖所示的幾何體的主視圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案