(2013•濰坊)一漁船在海島A南偏東20°方向的B處遇險(xiǎn),測(cè)得海島A與B的距離為20海里,漁船將險(xiǎn)情報(bào)告給位于A處的救援船后,沿北偏西80°方向向海島C靠近,同時(shí),從A處出發(fā)的救援船沿南偏西10°方向勻速航行,20分鐘后,救援船在海島C處恰好追上漁船,那么救援船航行的速度為(  )
分析:易得△ABC是直角三角形,利用三角函數(shù)的知識(shí)即可求得答案.
解答:解:∵∠CAB=10°+20°=30°,∠CBA=80°-20°=60°,
∴∠C=90°,
∵AB=20海里,
∴AC=AB•cos30°=10
3
(海里),
∴救援船航行的速度為:10
3
÷
20
60
=30
3
(海里/小時(shí)).
故選D.
點(diǎn)評(píng):本題考查了解直角三角形的應(yīng)用-方向角問(wèn)題,根據(jù)方位角的定義得到圖中方位角的度數(shù)是前提條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊)如圖1所示,將一個(gè)邊長(zhǎng)為2的正方形ABCD和一個(gè)長(zhǎng)為2、寬為1的長(zhǎng)方形CEFD拼在一起,構(gòu)成一個(gè)大的長(zhǎng)方形ABEF.現(xiàn)將小長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為a.
(1)當(dāng)點(diǎn)D′恰好落在EF邊上時(shí),求旋轉(zhuǎn)角a的值;
(2)如圖2,G為BC中點(diǎn),且0°<a<90°,求證:GD′=E′D;
(3)小長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過(guò)程中,△DCD′與△CBD′能否全等?若能,直接寫(xiě)出旋轉(zhuǎn)角a的值;若不能說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊二模)某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準(zhǔn)備從國(guó)內(nèi)和國(guó)外兩種銷售方案中選擇一種進(jìn)行銷售.若只在國(guó)內(nèi)銷售,銷售價(jià)格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=-
1
100
x+150,成本為20元/件,無(wú)論銷售多少,每月還需支出廣告費(fèi)62500元,設(shè)月利潤(rùn)為w內(nèi)(元).若只在國(guó)外銷售,銷售價(jià)格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時(shí),每月還需繳納
1
100
x2元的附加費(fèi),設(shè)月利潤(rùn)為w(元).
(1)當(dāng)x=1000時(shí),y=
140
140
元/件,w內(nèi)=
57500
57500
元;
(2)分別求出w內(nèi),w與x間的函數(shù)關(guān)系式(不必寫(xiě)x的取值范圍);
(3)當(dāng)x為何值時(shí),在國(guó)內(nèi)銷售的月利潤(rùn)最大?若在國(guó)外銷售月利潤(rùn)的最大值與在國(guó)內(nèi)銷售月利潤(rùn)的最大值相同,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊)如圖是常用的一種圓頂螺桿,它的俯視圖正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊)在某!拔业闹袊(guó)夢(mèng)”演講比賽中,有9名學(xué)生參加比賽,他們決賽的最終成績(jī)各不相同,其中的一名學(xué)生要想知道自己能否進(jìn)入前5名,不僅要了解自己的成績(jī),還要了解這9名學(xué)生成績(jī)的(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案