已知一個(gè)二次函數(shù)的關(guān)系式為 y=x2-2bx+c.
(1)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),
①則b、c 應(yīng)滿足關(guān)系為                ;
②若該二次函數(shù)的圖象經(jīng)過(guò)A(m,n)、B(m +6,n)兩點(diǎn),求n的值;
(2)若該二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn)C(6,0)、D(k,0),線段CD(含端點(diǎn))上有若干個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且這些點(diǎn)的橫坐標(biāo)之和為21,求b的取值范圍.

(1)c=b2,9;(2)7≤b<7.5或2.5<b≤3.5.

解析試題分析:(1)①根據(jù)二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),則b2-4ac=0,由此可得到b、c 應(yīng)滿足關(guān)系;
②把A(m,n)、B(m+6,n)分別代入拋物線的解析式,再根據(jù)①的結(jié)論即可求出n的值;
(2)因?yàn)閥=x2-2bx+c圖象與x軸交于C(6,0),即可得到36-12b+c=0,所以c=12b-36,進(jìn)而得到k=2b-6,再根據(jù)C、D之間的整數(shù)和為21,即可求出b的取值范圍.
(1)①∵二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),
∴b2-4ac=0,
∴c=b2,
②由,
得b=m+3,則c=(m+3)2;
于是,n=m2-2(m+3)m+(m+3)2=9;
(2)∵y=x2-2bx+c圖象與x軸交于C(6,0)
∴36-12b+c=0,∴c=12b-36
∴y=x2-2bx+12b-36,
令y=0得x2-2bx+12b-36=0
解得:x1=6,x2=2b-6,即k=2b-6;
∵C、D之間的整數(shù)和為21,
∴由8≤k<9,或-1<k≤1,
∴8≤2b-6<9,或-1<2b-6≤1,
解得7≤b<7.5或2.5<b≤3.5.
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線與x軸的交點(diǎn)為A、D(A在D的右側(cè)),與y軸的交點(diǎn)為C.
(1)直接寫出A、D、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為B,在拋物線上是否存在點(diǎn)P,使得以A、B、C、P四點(diǎn)為頂點(diǎn)的四邊形為梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線y=ax2+bx-3(a≠0)交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為5.點(diǎn)P是直線AB下方的拋物線上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PD的長(zhǎng),并求出線段PD長(zhǎng)的最大值;
②連結(jié)PB,線段PC把△PDB分成兩個(gè)三角形,是否存在適合的m的值,使這兩個(gè)三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,拋物線經(jīng)過(guò)A(-1,0),C(3,-2)兩點(diǎn),與軸交于點(diǎn)D,與軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線)將四邊形ABCD面積二等分,求的值;
(3)如圖2,過(guò)點(diǎn)E(1,1)作EF⊥軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)P旋轉(zhuǎn)180°得△MNQ(點(diǎn)M、N、Q分別與點(diǎn)A、E、F對(duì)應(yīng)),使點(diǎn)M、N在拋物線上,求點(diǎn)N和點(diǎn)P的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù).
(1)用配方法求其圖象的頂點(diǎn)C的坐標(biāo),并描述改函數(shù)的函數(shù)值隨自變量的增減而增減的情況;
(2)求函數(shù)圖象與x軸的交點(diǎn)A,B的坐標(biāo),及△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng)。當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移。DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5)。解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說(shuō)明理由。
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由。(圖(3)供同學(xué)們做題使用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與軸相交于點(diǎn),頂點(diǎn)為,點(diǎn)在這個(gè)二次函數(shù)圖象的對(duì)稱軸上.若四邊形是一個(gè)邊長(zhǎng)為2且有一個(gè)內(nèi)角為的菱形.求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)與x軸交于A(1,0)、B(3,0)兩點(diǎn);二次函數(shù)的頂點(diǎn)為P.
(1)請(qǐng)直接寫出:b=_______,c=___________;
(2)當(dāng)∠APB=90°,求實(shí)數(shù)k的值;
(3)若直線與拋物線L2交于E,F(xiàn)兩點(diǎn),問(wèn)線段EF的長(zhǎng)度是否發(fā)生變化?如果不發(fā)生變化,請(qǐng)求出EF的長(zhǎng)度;如果發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某菜農(nóng)搭建了一個(gè)橫截面為拋物線的大棚,尺寸如圖:

(1)如圖建立平面直角坐標(biāo)系,使拋物線對(duì)稱軸為y軸,求該拋物線的解析式;
(2)若需要開一個(gè)截面為矩形的門(如圖所示),已知門的高度為1.60米,那么門的寬度最大是多少米(不考慮材料厚度)?(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案