作業(yè)寶如圖,⊙O是△ABC的內(nèi)切圓,其切點分別為D、E、F,且BD=3,AE=2,則AB=________.

5
分析:根據(jù)切線長定理求出AF和BD的長,即可求出答案.
解答:∵⊙O是△ABC的內(nèi)切圓,其切點分別為D、E、F,且BD=3,AE=2,
∴AE=AF=2,BF=BD=3,
∴AB=AF+BF=2+3=5,
故答案為:5.
點評:本題考查了三角形的內(nèi)切圓和內(nèi)心,切線長定理的應用,關鍵是能根據(jù)切線長定理得出AF=AE,BD=BF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點D、交⊙O于點E,∠C=60°,如果⊙O的半徑為2,那么OD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,AD是△ABC的高,且AD平分∠BAC,請指出∠B與∠C的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點B作⊙O的切線交AC的延長線于點D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

查看答案和解析>>

同步練習冊答案