【題目】下面哪種不適于用來表示我校男、女教師的人數(shù)( )
A. 數(shù)據(jù)統(tǒng)計(jì)表 B. 扇形統(tǒng)計(jì)圖
C. 折線統(tǒng)計(jì)圖 D. 條形統(tǒng)計(jì)圖
【答案】C
【解析】
根據(jù)題意,要表示我校男、女教師的人數(shù),即體現(xiàn)人數(shù)的差異、關(guān)系,而折線統(tǒng)計(jì)圖體現(xiàn)數(shù)量的變化情況,不適合表示我校男、女教師的人數(shù),即可得答案.
根據(jù)題意,分析選項(xiàng)可得,
用來表示男、女教師的人數(shù)統(tǒng)計(jì)表、扇形統(tǒng)計(jì)圖、條形統(tǒng)計(jì)圖均能體現(xiàn)人數(shù)的差異、關(guān)系,而折線統(tǒng)計(jì)圖體現(xiàn)數(shù)量的變化情況,不適合表示男、女教師的人數(shù).
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BCA=90°,CD是AB邊上的中線,分別過點(diǎn)C,D作BA和BC的平行線,兩線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE. 求證:四邊形ADCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級二班的學(xué)生在植樹節(jié)開展“植樹造林,綠化城市”的活動,本次活動結(jié)
束后,該班植樹情況的部分統(tǒng)計(jì)圖如下所示,那么該班的總?cè)藬?shù)是 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,,,是的中點(diǎn),,分別是,上的點(diǎn)(點(diǎn)不與端點(diǎn)重合),且,連接并取的中點(diǎn),連接并延長至點(diǎn),使,連接.
(1)求證:四邊形是正方形;
(2)當(dāng)點(diǎn)在什么位置是,四邊形的面積最?并求四邊形面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,AE∥CF,且分別交對角線BD于點(diǎn)E,F(xiàn).
(1)求證:△AEB≌△CFD;
(2)連接AF,CE,若∠AFE=∠CFE,求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(5,0).
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)該拋物線與直線相交于C、D兩點(diǎn),點(diǎn)P是拋物線上的動點(diǎn)且位于x軸下方,直線PM∥y軸,分別與x軸和直線CD交于點(diǎn)M、N.
①連結(jié)PC、PD,如圖1,在點(diǎn)P運(yùn)動過程中,△PCD的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由;
②連結(jié)PB,過點(diǎn)C作CQ⊥PM,垂足為點(diǎn)Q,如圖2,是否存在點(diǎn)P,使得△CNQ與△PBM相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com