在平面直角坐標(biāo)系xOy中,點(diǎn)P從原點(diǎn)O出發(fā),且點(diǎn)P只能每次向上平移2個(gè)單位長(zhǎng)度或向右平移1個(gè)單位長(zhǎng)度.
(1)實(shí)驗(yàn)操作:在平面直角坐標(biāo)系xOy中,點(diǎn)P從原點(diǎn)O出發(fā),平移1次后可能到達(dá)的點(diǎn)的坐標(biāo)是(0,2),(1,0);點(diǎn)P從原點(diǎn)O出發(fā),平移2次后可能到達(dá)的點(diǎn)的坐標(biāo)是(0,4),(1,2),(2,0);點(diǎn)P從原點(diǎn)O出發(fā),平移3次后可能到達(dá)的點(diǎn)的坐標(biāo)是______;
(2)觀察發(fā)現(xiàn):
任一次平移,點(diǎn)P可能到達(dá)的點(diǎn)在我們學(xué)過(guò)的一種函數(shù)的圖象上,如:平移1次后在函數(shù)y=-2x+2的圖象上;平移2次后在函數(shù)y=-2x+4的圖象上,….若點(diǎn)P平移5次后可能到達(dá)的點(diǎn)恰好在直線y=3x上,則點(diǎn)P的坐標(biāo)是______;
(3)探究運(yùn)用:
點(diǎn)P從原點(diǎn)O出發(fā)經(jīng)過(guò)n次平移后,到達(dá)直線y=x上的點(diǎn)Q,且平移的路徑長(zhǎng)不小于30,不超過(guò)32,求點(diǎn)Q的坐標(biāo).

解:(1)∵在平面直角坐標(biāo)系xOy中,點(diǎn)P從原點(diǎn)O出發(fā),且點(diǎn)P只能每次向上平移2個(gè)單位長(zhǎng)度或向右平移1個(gè)單位長(zhǎng)度,
∴當(dāng)點(diǎn)P平移3次后的坐標(biāo)是:
①當(dāng)點(diǎn)P連續(xù)向上平移3次時(shí),點(diǎn)P的坐標(biāo)是(0,6);
②當(dāng)點(diǎn)P先向右平移1次,再向上平移2次時(shí),點(diǎn)P的坐標(biāo)是(1,4);
③當(dāng)點(diǎn)P先向右平移2次,再向上平移1次時(shí),點(diǎn)P的坐標(biāo)是(2,2);
③當(dāng)點(diǎn)P連續(xù)相右平移3次時(shí),點(diǎn)P的坐標(biāo)是(3,0).

(2)∵平移1次后在函數(shù)y=-2x+2的圖象上;
平移2次后在函數(shù)y=-2x+4的圖象上,
∴點(diǎn)P平移n次后可能到達(dá)的點(diǎn)恰好在直線y=-2x+2n上,
又∵點(diǎn)P平移5次后可能到達(dá)的點(diǎn)恰好在直線y=3x上.
∴-2x+2×5=3x,
解得x=2,
則y=2×3=6,
∴P(2,6);

(3)設(shè)點(diǎn)Q的坐標(biāo)為(x,y).
由題意,得 ,
 解得 
∴點(diǎn)Q的坐標(biāo)為
∵平移的路徑長(zhǎng)為(x+y),
∴30≤≤32.
∴22.5≤π≤24.
∵點(diǎn)Q的坐標(biāo)為正整數(shù),
∴點(diǎn)Q的坐標(biāo)為(16,16).
故答案是:(0,6),(1,4),(2,2),(3,0);(2,6).
分析:(1)根據(jù)平移的規(guī)律是:在平面直角坐標(biāo)系xOy中,點(diǎn)P從原點(diǎn)O出發(fā),且點(diǎn)P只能每次向上平移2個(gè)單位長(zhǎng)度或向右平移1個(gè)單位長(zhǎng)度.所以平移可以連續(xù)向上平移,也可以連續(xù)向右平移,也可以先向上平移后向右平移(或先向右平移后向上平移);
(2)根據(jù)正比函數(shù)圖象上點(diǎn)的坐標(biāo)特征來(lái)填空;
(3)設(shè)點(diǎn)Q的坐標(biāo)為(x,y),求出Q點(diǎn)的坐標(biāo),得出n的取值范圍,再根據(jù)點(diǎn)Q的坐標(biāo)為正整數(shù)即可進(jìn)行解答.
點(diǎn)評(píng):本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=-
4
9
(x-2)2
+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=
2
5
5

(1)求此拋物線的函數(shù)表達(dá)式;
(2)過(guò)H的直線與y軸相交于點(diǎn)P,過(guò)O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F(xiàn),若
HE
HF
=
1
2
時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG與△ADM相似?若存在,求出所有符合條件的精英家教網(wǎng)直線QG的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2-2ax+b與x軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交精英家教網(wǎng)點(diǎn)B在A點(diǎn)的右側(cè);交y軸于(0,-3).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線上一點(diǎn)D的坐標(biāo)為(-3,12),在x軸上是否存在一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的三角形與△ABD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點(diǎn)M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點(diǎn)B與原點(diǎn)O重合,BC邊落在x軸的正半軸上,點(diǎn)A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點(diǎn)E、F,在△ABC平移的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿折線B→A→C運(yùn)動(dòng),當(dāng)點(diǎn)P達(dá)到點(diǎn)C時(shí),點(diǎn)P停止運(yùn)動(dòng),△ABC也隨之停止平移.設(shè)△ABC平移時(shí)間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長(zhǎng);
(2)當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(3)點(diǎn)P沿折線B→A→C運(yùn)動(dòng)的過(guò)程中,是否在某一時(shí)刻,使△PEF為等腰三角形?若存在,求出此時(shí)t值;若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)如圖,已知在平面直角坐標(biāo)系xoy中,拋物線y=ax2+bx+c(a>0)與x軸相交于A(-1,0),B(3,0)兩點(diǎn),對(duì)稱軸l與x軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,且∠ADC的正切值為
12

(1)求頂點(diǎn)D的坐標(biāo);
(2)求拋物線的表達(dá)式;
(3)F點(diǎn)是拋物線上的一點(diǎn),且位于第一象限,連接AF,若∠FAC=∠ADC,求F點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在等腰直角三角板ABC中,斜邊BC為2個(gè)單位長(zhǎng)度,現(xiàn)把這塊三角板在平面直角坐標(biāo)系xOy中滑動(dòng),并使B、C兩點(diǎn)始終分別位于y軸、x軸的正半軸上,直角頂點(diǎn)A與原點(diǎn)O位于BC兩側(cè).
(1)取BC中點(diǎn)D,問(wèn)OD+DA是否發(fā)生改變,若會(huì),說(shuō)明理由;若不會(huì),求出OD+DA;
(2)你認(rèn)為OA的長(zhǎng)度是否會(huì)發(fā)生變化?若變化,那么OA最長(zhǎng)是多少?OA最長(zhǎng)時(shí)四邊形OBAC是怎樣的四邊形?并說(shuō)明理由;
(3)填空:當(dāng)OA最長(zhǎng)時(shí)A的坐標(biāo)(
2
2
,
2
2
),直線OA的解析式
y=x
y=x

查看答案和解析>>

同步練習(xí)冊(cè)答案