如圖,AD是∠BAC的角平分線,交△ABC的邊BC于點D,BH⊥AD,CK⊥AD,垂足分別為H、K,你能說明AB•DK=AC•DH嗎?
分析:由題意,易證得△ABH∽△ACK,△BHD∽△CKD,根據(jù)相似三角形的對應邊成比例,則有
AB
AC
=
BH
CK
BH
CK
=
DH
KD
,即可得
AB
AC
=
DH
KD
,即有AB•DK=AC•DH.
解答:證明:∵AD是∠BAC的角平分線,
∴∠CAK=∠BAH,
∵BH⊥AD,CK⊥AD,
∴∠H=∠AKC=90°,CK∥BH,
∴△ABH∽△ACK,△BHD∽△CKD,
AB
AC
=
BH
CK
,
BH
CK
=
DH
KD
,
AB
AC
=
DH
KD

∴AB•DK=AC•DH.
點評:此題考查了相似三角形的判定與性質.此題難度適中,注意掌握數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,AD是∠BAC的角平分線,交△ABC的邊BC于點D,BH⊥AD,CK⊥AD,垂足分別為H、K.
求證:(1)△CHD∽△BKD;
(2)AB•DH=AC•DK.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是∠BAC的平分線,點E在AB上,且AE=AC,EF∥BC交AC于點F.
試說明:EC平分∠DEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是∠BAC的平分線,DE⊥AB于E.若△ABC的面積為45cm2,AB=15cm,AC=12cm,則DE=
10
3
cm
10
3
cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是∠BAC的平分線,寫出圖中相等的角:
∠BAD=∠CAD
∠BAD=∠CAD

查看答案和解析>>

同步練習冊答案