【題目】點E(a,b)到x軸的距離是4,到y(tǒng)軸距離是3,則有( )
A.a=3,b=4
B.a=±3,b=±4
C.a=4,b=3
D.a=±4,b=±3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定一種新運算“★”,其意義為a★b=a2-ab-5,如2★1=22-2×1-5=-3.則(-4)★(-2)的值為( )
A. 3 B. -3 C. -13 D. -29
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊BC、CD上的點, =,CF=DF,連接AE、AF、EF,并延長FE交AB的延長線于點G.
(1)若正方形的邊長為4,則EG等于 ;
(2)求證:△ECF∽△FDA;
(3)比較∠EAB與∠EAF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)家楊輝的《田畝比類乘除捷法》有這么一道題:“直田積八百六十四步,只云長闊共六十步,問長多闊幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多多少步?經(jīng)過計算,你的結(jié)論是:長比寬多( )
A.12步
B.24步
C.36步
D.48步
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P在第三象限,且到x軸的距離為3,到y(tǒng)軸的距離為5,則點P的坐標(biāo)為( )
A.(3,5)
B.(-5,3)
C.(3,-5)
D.(-5,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】
課外興趣小組活動時,老師提出了如下問題:
如圖①,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點E,使DE=AD,連接BE.請根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關(guān)系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點”、“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形之中.
【初步運用】
如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
【靈活運用】
如圖③,在△ABC中, ∠A=90°,D為BC中點, DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com