10、如圖,已知AB是⊙O的直徑,C是⊙O外一點,CA、CB交⊙O分別于D、E點,且AB=1,則cos∠C=(  )
分析:因為A、B、E、D四點共圓,易證三角形CDE相似于三角形CBA,所以CE:AC=DE:AB,連接AE,AB為直徑,所以AE垂直于BC,所以cos∠C=CE:AC所以cos∠C=CE:AC=DE:AB=DE:1=DE.
解答:解:∵四邊形ABED是圓內接四邊形,
∴∠CDE=∠B∠CED=∠A,
∴△CDE∽△CBA,
∴CE:AC=DE:AB,
連接AE,
∵AB為直徑,∴AE⊥BC,
∴cos∠C=CE:AC,
∵AB=1,
∴cos∠C=CE:AC=DE:AB=DE:1=DE.
故選A.
點評:本題考查了相似三角形的判定和性質、圓周角定理以及圓內接四邊形的性質,是基礎知識要熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結論不成立的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案