如圖,在等腰△ABC中,底邊BC上有任一點(diǎn)P,則點(diǎn)P到兩腰的距離之和等于定長(zhǎng)(腰上的高)即PD+PE=CF如圖(1),若點(diǎn)P在BC的延長(zhǎng)線上,如圖(2),那么PD、PE、CF之間存在什么樣的等式關(guān)系,寫(xiě)出你的猜想,并證明.

答案:略
解析:

解:PDPE、FC之間的相等關(guān)系為:PD=PEFC

證明如下:連接AP,則有面積關(guān)系:

由面積公式有:

AB=AC,

PD=CFPE


提示:

此題是一道開(kāi)放型試題,作出PD、PE后,顯然有PDCF,從而PDPE=FC在圖(2)中不成立,因此PD、PE、CF之間的相等關(guān)系應(yīng)為PD=PEFC


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,BE⊥AC,垂足為E,則∠1與∠A的關(guān)系式為( 。
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,AB的垂直平分線DE交AB于點(diǎn)D,交另一腰AC于點(diǎn)E,若∠EBC=15°,則∠A=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,在等腰△ABC中,AB=AC,∠ABC=α,在四邊形BDEC中,DB=DE,∠BDE=2α,M為CE的中點(diǎn),連接AM,DM.
(1)在圖中畫(huà)出△DEM關(guān)于點(diǎn)M成中心對(duì)稱(chēng)的圖形;
(2)求證AM⊥DM;
(3)當(dāng)α=
45°
,AM=DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•麗水)如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點(diǎn).若BC=8cm,則△BCE的周長(zhǎng)是
18
18
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案