求證:無論p取何值方程(x-2)(x-1)-p2=0有兩個不相等的實數(shù)根.

證明:△=(-3)2-4×(2-p2),
=4p2+1,
∵4p2≥0,
∴4p2+1>0,
∴△>0,
∴無論p為何值時,方程有兩個不相等的實數(shù)根.
分析:先計算△得到△=(-3)2-4×(2-p2)=4p2+1,由于4p2≥0,則有△>0,然后根據(jù)△的意義即可得到結(jié)論.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程mx2-(4m+3)x+3m+3=0.
(1)求證:無論m取何值方程必有實數(shù)根;
(2)設(shè)m>0方程的兩個實數(shù)根分別為x1,x2(其中x1<x2).若y是關(guān)于m的函數(shù),且y=x2-3x1,求這個函數(shù)的解析式;
(3)在(2)的條件下,結(jié)合函數(shù)的圖象回答:當(dāng)自變量m的取值范圍滿足什么條件時,y≤m+2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

求證:無論p取何值方程(x-2)(x-1)-p2=0有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:關(guān)于x的方程mx2-(4m+3)x+3m+3=0.
(1)求證:無論m取何值方程必有實數(shù)根;
(2)設(shè)m>0方程的兩個實數(shù)根分別為x1,x2(其中x1<x2).若y是關(guān)于m的函數(shù),且y=x2-3x1,求這個函數(shù)的解析式;
(3)在(2)的條件下,結(jié)合函數(shù)的圖象回答:當(dāng)自變量m的取值范圍滿足什么條件時,y≤m+2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州市太倉市九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知:關(guān)于x的方程mx2-(4m+3)x+3m+3=0.
(1)求證:無論m取何值方程必有實數(shù)根;
(2)設(shè)m>0方程的兩個實數(shù)根分別為x1,x2(其中x1<x2).若y是關(guān)于m的函數(shù),且y=x2-3x1,求這個函數(shù)的解析式;
(3)在(2)的條件下,結(jié)合函數(shù)的圖象回答:當(dāng)自變量m的取值范圍滿足什么條件時,y≤m+2.

查看答案和解析>>

同步練習(xí)冊答案