【題目】閱讀下列材料:

材料一:一個大于1的自然數(shù),除了1和它自身外,不能被其他自然數(shù)整除的數(shù)叫做質(zhì)數(shù),否則稱為合數(shù).

其中,10既不是質(zhì)數(shù)也不是合數(shù).

材料二:一個較大自然數(shù)是質(zhì)數(shù)還是合數(shù)通常用來判斷,主要分為三個步驟:

第一步,找出大于且最接近的平方數(shù);

第二步,用小于的所有質(zhì)數(shù)去除;

第三步,如果這些質(zhì)數(shù)都不能整除,那么是質(zhì)數(shù);如果這些質(zhì)數(shù)中至少有一個能整除,那么就是合數(shù).

如何判斷239是質(zhì)數(shù)還是合數(shù)?

第一步,

第二步,小于16的質(zhì)數(shù)有:23、5、711、13,用2、3、5、711、13依次去除239;

第三步,發(fā)現(xiàn)沒有質(zhì)數(shù)能整除239,所以239是質(zhì)數(shù).

材料三:分解質(zhì)因數(shù)就是把一個合數(shù)分解成若干個質(zhì)數(shù)的乘積的形式,通過分解質(zhì)因數(shù)可以確定該合數(shù)的約數(shù)的個數(shù).若,是不相等的質(zhì)數(shù),,,是正整數(shù)),則合數(shù)共有個約數(shù).如,,則8共有4個約數(shù);又如,則12共有6個約數(shù).請用以上方法解決下列問題:

1)請用判斷163是質(zhì)數(shù)還是合數(shù);

2)求有12個約數(shù)的最小自然數(shù).

【答案】(1)163是質(zhì)數(shù);(2)有12個約數(shù)的最小自然數(shù)為60

【解析】

1)用2、3、5、7、11、13依次去除163;

2122×61×123×43×2×2,自然數(shù)可以是211,25×3123×32,22×31×51,求最小的即可.

解:(1

小于13的質(zhì)數(shù)為2,3,5,7115

顯然,用2,3,5,711分別除163,它們都不能整除163,

∴163是質(zhì)數(shù).

2)∵

有四種情形:

當(dāng),

當(dāng)時,,

當(dāng)時,

當(dāng),時,,,

顯然,

12個約數(shù)的最小自然數(shù)為60

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,中點,點延長線上,,,于點

1)若,求的度數(shù);

2)求證:;

3)設(shè)于點

①若,,求的值;

②連結(jié),分別記,的面積為,,,當(dāng)時, .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形中,分別為上的點,且,連接并延長,與的延長線交于點,連接

1)求證:四邊形是平行四邊形;

2)連接,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,點邊上一動點(與點不重合),連接的兩邊所在射線以點為中心,順時針旋轉(zhuǎn)分別交射線于點

1)依題意補全圖形;

2)若,求的大小(用含的式子表示) ;

3)用等式表示線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把三角形紙片折疊,使的對應(yīng)點上,點的對應(yīng)點上,折痕分別為,,若,,則的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市生物和地理會考的考試結(jié)果以等級形式呈現(xiàn),分A、BC、D四個等級.某校八年級學(xué)生參加生物會考后,隨機抽取部分學(xué)生的生物成績進(jìn)行統(tǒng)計,繪制成如下兩幅不完整的統(tǒng)計圖.

1)這次抽樣調(diào)查共抽取了 名學(xué)生的生物成績.扇形統(tǒng)計圖中,D等級所對應(yīng)的扇形圓心角度數(shù)為 °;

2)將條形統(tǒng)計圖補充完整;

3)若該校八年級有400名學(xué)生,估計這次考試有多少名學(xué)生的生物成績等級為D級?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,CE平分∠BCD,∠DAC3BCD,∠ACD20°,當(dāng)ABAC互相垂直時,∠B的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對角線,ADBC,AD2BC,∠ABD90°EAD的中點,連接BE

1)求證:四邊形BCDE為菱形;

2)連接AC,若AC平分∠BADBC2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園內(nèi)有一座古塔AB,在塔的北面有一棟建筑物,某日上午9時太陽光線與水平面的夾角為32°,此時塔在建筑物的墻上留下了高3米的影子CD.中午12時太陽光線與地面的夾角為45°,此時塔尖A在地面上的影子E與墻角C的距離為15米(B、EC在一條直線上),求塔AB的高度.(結(jié)果精確到0.01米)

參考數(shù)據(jù):sin32°≈0.5299,cos32°≈0.8480tan32°≈0.6249,

查看答案和解析>>

同步練習(xí)冊答案