(2003•青島)當(dāng)a<1且a≠0時,化簡=   
【答案】分析:根據(jù)開平方的性質(zhì)計(jì)算.
解答:解:∵a<1且a≠0,
∴a-1<0,
故原式===-
點(diǎn)評:應(yīng)把被開方數(shù)整理成完全平方公式的形式再進(jìn)行化簡.需注意二次根式的結(jié)果一定為非負(fù)數(shù).互為相反數(shù)的兩個數(shù)相除得-1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•青島)巳知:如圖,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.
(1)求BC、AD的長度;
(2)若點(diǎn)P從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/秒的速度運(yùn)動,點(diǎn)Q從點(diǎn)C開始沿CD邊向點(diǎn)D以1cm/秒的速度運(yùn)動,當(dāng)P、Q分別從B、C同時出發(fā)時,寫出五邊形ABPQD的面積S與運(yùn)動時間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍(不包含點(diǎn)P在B、C兩點(diǎn)的情況);
(3)在(2)的前提下,是否存在某一時刻t,使線段PQ把梯形ABCD分成兩部分的面積比為1:5?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:填空題

(2003•青島)九年義務(wù)教育三年制初級中學(xué)教科書《代數(shù)》第三冊第52頁的例2是這樣的:“解方程x4-6x2+5=0”.這是一個一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-6y+5=0…①,解這個方程得:y1=1,y2=5.當(dāng)y=1時,x2=1,∴x=±1;當(dāng)y=5時,x2=5,∴.所以原方程有四個根:x1=1,x2=-1,x3=,x4=-
(1)在由原方程得到方程①的過程中,利用    法達(dá)到降次的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
(2)解方程(x2-x)2-4(x2-x)-12=0時,若設(shè)y=x2-x,則原方程可化為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年山東省青島市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•青島)巳知:如圖,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.
(1)求BC、AD的長度;
(2)若點(diǎn)P從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/秒的速度運(yùn)動,點(diǎn)Q從點(diǎn)C開始沿CD邊向點(diǎn)D以1cm/秒的速度運(yùn)動,當(dāng)P、Q分別從B、C同時出發(fā)時,寫出五邊形ABPQD的面積S與運(yùn)動時間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍(不包含點(diǎn)P在B、C兩點(diǎn)的情況);
(3)在(2)的前提下,是否存在某一時刻t,使線段PQ把梯形ABCD分成兩部分的面積比為1:5?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年山東省青島市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2003•青島)當(dāng)a<1且a≠0時,化簡=   

查看答案和解析>>

同步練習(xí)冊答案