【題目】如圖,已知直線射線,。是射線上一動點,過點作交射線于點,連結(jié)。作,交直線于點,平分。
(1)若點都在點的右側(cè)。
①求的度數(shù);
②若,求的度數(shù)。
(2)在點的運動過程中,是否存在這樣的情形,使,若存在,求出的度數(shù);若不存在,請說明理由。
【答案】(1)①40°;②60°;(2)60°或15°.
【解析】
(1)①根據(jù)平行線的性質(zhì)可知,再結(jié)合角平分線的性質(zhì)可求得,進而求解即可.
②根據(jù)平行線性質(zhì)可得,結(jié)合已知條件且可求得,根據(jù)平行線性質(zhì)進而可求得.
(2)根據(jù)已知條件設,則,分①當點在點的右側(cè)時②當點在點的左側(cè)時兩種情況,結(jié)合已知條件進行求解即可.
(1)①∵,,
∴,
∵,平分,
∴
②∵
∴,
,
∴
又∵,
∴
∴
∵
∴
(2)設,則,
①當點在點的右側(cè)時,
則,
∵,
∴,解得,
∴
②當點在點的左側(cè)時,
則,
∵,,
∴,解得,
∴
∴
∴
科目:初中數(shù)學 來源: 題型:
【題目】已知點為直線上的一點,為直角,平分.
(1)如圖1,若,則______°.
(2)如圖1,若,求的度數(shù).(用含的代數(shù)式表示)
(3)如圖2,若,平分,且,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式:
=-1;
;
.
(1)根據(jù)前面各式的規(guī)律可得:
①.
②.
(2)請用上面的結(jié)論進行計算:
①(答案可含有冪的形式表示);
②若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=75°,BC=7,△ABC的面積為14,D為 BC邊上一動點(不與B,C重合),將△ABD和△ACD分別沿直線AB,AC翻折得到△ABE與△ACF,那么△AEF的面積最小值為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B、C在線段AD的異側(cè),點E、F分別是線段AB、CD上的點.已知∠AEG=∠AGE,∠DCG=∠DGC.
(1) 求證:AB∥CD
(2) 若∠AGE+∠AHF=180°,且∠BFC-30°=2∠C,求∠B的度數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與坐標軸交于點A(-1, 0)和點B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最。埱蟪鳇cP的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當?shù)慕祪r措施,擴大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖∠AOB=120°,把三角板60°的角的頂點放在O處.轉(zhuǎn)動三角板(其中OC邊始終在∠AOB內(nèi)部),OE始終平分∠AOD.
(1)(特殊發(fā)現(xiàn))如圖1,若OC邊與OA邊重合時,求出∠COE與∠BOD的度數(shù).
(2)(類比探究)如圖2,當三角板繞O點旋轉(zhuǎn)的過程中(其中OC邊始終在∠AOB內(nèi)部),∠COE與∠BOD的度數(shù)比是否為定值?若為定值,請求出這個定值;若不為定值,請說明理由.
(3)(拓展延伸)如圖3,在轉(zhuǎn)動三角板的過程中(其中OC邊始終在∠AOB內(nèi)部),若OP平分∠COB,請畫出圖形,直接寫出∠EOP的度數(shù)(無須證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)
(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com