精英家教網 > 初中數學 > 題目詳情

【題目】火車站有某公司待運的甲種貨物1530,乙種貨物1150,現計劃用50節(jié)A,B兩種型號的車廂將這批貨物運至北京,已知每節(jié)A型車廂的運費是0.5萬元,每節(jié)B型車廂的運費是0.8萬元;甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型車廂,甲種貨物25噸和乙種貨物35噸可裝滿一節(jié)B型車廂,按此要求安排A,B兩種車廂的節(jié)數,共有哪幾種方案?請你設計出所有方案,并說明哪種方案的運費最少.

【答案】運送方案有三種:

方案一:A型車廂28節(jié),B型車廂22節(jié);

方案二:A型車廂29節(jié),B型車廂21節(jié);

方案三:A型車廂30節(jié),B型車廂20節(jié).

方案三運費最少.

【解析】

A型貨廂裝甲種貨物噸數+B型貨廂裝甲種貨物噸數≥1530;A型貨廂裝乙種貨物噸數+B型貨廂裝乙種貨物噸數≥1150,把相關數值代入可得一種貨廂節(jié)數的范圍,進而求得總運費的等量關系,根據函數的增減性可得最少運費方案及最少運費.

:A型車廂為x節(jié),B型車廂為(50-x)節(jié),

根據題意得,

解得28≤x≤30.

因為x為整數,所以x28,29,30.

因此運送方案有三種:

方案一:A型車廂28節(jié),B型車廂22節(jié);

方案二:A型車廂29節(jié),B型車廂21節(jié);

方案三:A型車廂30節(jié),B型車廂20節(jié).

設運費為y萬元,y=0.5x+0.8(50-x)=40-0.3x,

x=28,y=31.6;x=29,y=31.3;x=30,y=31.

因此,選方案三,A型車廂30節(jié),B型車廂20節(jié)時運費最少.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,∠BAP+APD=180°,∠1=2,求證:∠E=F

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現有足夠多的正方形和長方形的卡片,如圖1所示,請運用拼圖的方法,選取相應種類和數量的卡片,按要求回答下列問題.

1)根據圖2,利用面積的不同表示方法,寫出一個代數恒等式:______________________;

2)若要拼成一個長為,寬為的長方形,則需要甲卡片____張,乙卡片____張,丙卡片____張;

3)請用畫圖結合文字說明的方式來解釋: 0,0).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論錯誤的是( )

A.AC=FG
B.SFAB:S四邊形CBFG=1:2
C.AD2=FQAC
D.∠ADC=∠ABF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點AC分別在∠GBE的邊BG、BE上,且AB=AC,ADBE,∠GBE的平分線與AD交于點D,連接CD

1)求證:AB=AD;

2)求證:CD平分∠ACE

3)猜想∠BDC與∠BAC之間有何數量關系?并對你的猜想加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形ABCD的兩條對稱軸為坐標軸,點A的坐標為(2,1).一張透明紙上畫有一個點和一條拋物線,平移透明紙,這個點與點A重合,此時拋物線的函數表達式為y=x2 , 再次平移透明紙,使這個點與點C重合,則該拋物線的函數表達式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點,連接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某醫(yī)院研發(fā)了一種新藥,試驗藥效時發(fā)現,如果成人按規(guī)定劑量服用,那么服藥2小時后,血液中含藥量最高,達每毫升6微克,接著逐漸衰減,10小時后血液中含藥量為每毫升3微克,每毫升血液中含藥量y(微克)隨時間x(小時)的變化如圖所示,當成人按規(guī)定劑量服藥后:

(1)服藥后幾小時血液中含藥量最高?達到每毫升血液中含藥多少微克?

(2)在服藥幾個小時后,血液中的含藥量逐漸升高?在幾小時后,血液中的含藥量逐漸衰減?

(3)服藥后10小時時,血液中含藥量是多少微克?

(4)服藥幾小時后即已無效?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示是某學校的平面圖的一部分,其中A代表音樂樓,B代表實驗樓,C代表圖書館,正方形網格中每個小正方形的邊長為1,試結合圖形回答下列問題:

(1)(1,4)表示音樂樓A的位置,那么實驗樓B和圖書館C的位置如何表示?

(2)三座樓房之間修三條路ACABBC,且已知這三條路的長度存在下列關系:AC2AB2BC2.量得BA的距離為3,若記東偏北方向為,東偏南方向為,則B點相對于A點的位置記作(45°,3).那么,C點相對于A點的位置可如何表示?

查看答案和解析>>

同步練習冊答案