如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(-1,2),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中-2<x1<-1,0<x2<1,下列結(jié)論:
①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.
其中正確的個(gè)數(shù)有   
提示:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是,頂點(diǎn)坐標(biāo)是
【答案】分析:首先根據(jù)拋物線的開(kāi)口方向向下可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點(diǎn)中,-2<x1<-1,0<x2<1說(shuō)明拋物線的對(duì)稱軸在-1~0之間,即x=->-1,可根據(jù)這些條件以及函數(shù)圖象上一些特殊點(diǎn)的坐標(biāo)來(lái)進(jìn)行判斷,即可得到正確的選項(xiàng).
解答:解:由圖知:拋物線的開(kāi)口向下,則a<0;拋物線的對(duì)稱軸x=->-1,且c>0;
①由圖可得:當(dāng)x=-2時(shí),y<0,即4a-2b+c<0,故①正確;
②已知x=->-1,且a<0,所以2a-b<0,故②正確;
③已知拋物線經(jīng)過(guò)(-1,2),即a-b+c=2(i),由圖知:當(dāng)x=1時(shí),y<0,即a+b+c<0(ii),
由①知:4a-2b+c<0(iii);聯(lián)立(i)(ii),得:a+c<1;聯(lián)立(i)(iii)得:2a-c<-4;
故3a<-3,即a<-1;所以③正確;
④由于拋物線的對(duì)稱軸大于-1,所以拋物線的頂點(diǎn)縱坐標(biāo)應(yīng)該大于2,即:>2,
由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故④正確;
因此正確的結(jié)論是①②③④.
故答案為:①②③④.
點(diǎn)評(píng):本題主要考查對(duì)二次函數(shù)圖象與系數(shù)的關(guān)系,拋物線與x軸的交點(diǎn),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征等知識(shí)點(diǎn)的理解和掌握,能根據(jù)圖象確定與系數(shù)有關(guān)的式子的正負(fù)是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)小明從如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,觀察得出了下面六條信息:
①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤4a+2b+c>0;⑥一元二次方程ax2+bx+c=0有兩異號(hào)實(shí)根.
你認(rèn)為其中正確信息的個(gè)數(shù)有( 。
A、3個(gè)B、4個(gè)C、5個(gè)D、6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一男生在校運(yùn)會(huì)的比賽中推鉛球,鉛球的行進(jìn)高度y(m)與水平距離x(m)之間的關(guān)系用如圖所示的二次函數(shù)圖象表示.(精英家教網(wǎng)鉛球從A點(diǎn)被推出,實(shí)線部分表示鉛球所經(jīng)過(guò)的路線)
(1)由已知圖象上的三點(diǎn),求y與x之間的函數(shù)關(guān)系式;
(2)求出鉛球被推出的距離;
(3)若鉛球到達(dá)的最大高度的位置為點(diǎn)B,落地點(diǎn)為C,求四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,劉星同學(xué)觀察得出了下面四條信息:
(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你認(rèn)為其中錯(cuò)誤的有( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,二次函數(shù) y=ax2+bx+c的圖象與x軸交于點(diǎn)A和點(diǎn)B(A、B分別位于原點(diǎn)O的兩側(cè)),與y軸的下半軸交于點(diǎn)C,且tan∠OAC=2,AB=CB=5.
(1)求直線BC和二次函數(shù)的解析式;
(2)直線BC上是否存在這樣的點(diǎn)P,使△PAB和△OBC相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•甘谷縣模擬)如圖所示是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)A點(diǎn)(3,0),對(duì)稱軸為x=1,給出四個(gè)結(jié)論:①b2-4ac>0;②2a+b=0;③a+b+c=0;④當(dāng)x=-1或x=3時(shí),函數(shù)y的值都等于0.把正確結(jié)論的序號(hào)填在橫線上
①②④
①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案