如圖是一座大樓前的六級臺階的截面圖,每級臺階的高為0.15米,寬為0.30米,現(xiàn)要將它改為無障礙通道(圖中EF所示的斜坡),如果斜坡EF的坡角為8°,求斜坡底部點F與臺階底部點A的距離AF.(精確到0.01米)
(備用數(shù)據(jù):tan8°=0.140,sin8°=0.139,cos8°=0.990)

【答案】分析:過E作AB的垂線,設垂足為H;根據(jù)每級臺階的高和寬,可求得EH、AH的長.欲求AF,已知了AH的長,只需求出FH即可.在Rt△FEH中,已知了斜坡EF的坡角的度數(shù),以及鉛直高度EH的長,即可求出FH的值,AF=FH-AH,由此得解.
解答:解:作EH⊥AB,垂足為點H;(1分)
由題意,得EH=0.9米,AH=1.5米;(2分)
在Rt△EFH中,,∴;(3分)
∴FH≈6.429(米)(2分)
∴AF=FH-AH=6.429-1.5=4.929≈4.93(米).(2分)
注:如果使用計算器產(chǎn)生的誤差,也可被認可,如FH≈6.404,AF≈4.90等.
點評:應用問題盡管題型千變?nèi)f化,但關鍵是設法化歸為解直角三角形問題,必要時應添加輔助線,構造出直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖是一座大樓前的六級臺階的截面圖,每級臺階的高為0.15米,寬為0.30米,現(xiàn)要將它改為無障礙通道(圖中EF所示的斜坡),如果斜坡EF的坡角為8°,求斜坡底部點F與臺階底部點A的距離AF.(精確到0.01米)
(備用數(shù)據(jù):tan8°=0.140,sin8°=0.139,cos8°=0.990)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖是一座大樓前的六級臺階的截面圖,每級臺階的高為0.15米,寬為0.30米,現(xiàn)要將它改為無障礙通道(圖中EF所示的斜坡),如果斜坡EF的坡角為8°,求斜坡底部點F與臺階底部點A的距離AF.(精確到0.01米)
(備用數(shù)據(jù):tan8°=0.140,sin8°=0.139,cos8°=0.990)

查看答案和解析>>

科目:初中數(shù)學 來源:上海市期末題 題型:解答題

如圖是一座大樓前的六級臺階的截面圖,每級臺階的高為0.15米,寬為0.30米,現(xiàn)要將它改為無障礙通道(圖中EF所示的斜坡),如果斜坡EF的坡角為8o,求斜坡底部點F與臺階底部點A的距離AF.(精確到0.01米)(備用數(shù)據(jù):tan8o=0.140,sin8o=0.139,cos8o=0.990)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市浦東新區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•長寧區(qū)一模)如圖是一座大樓前的六級臺階的截面圖,每級臺階的高為0.15米,寬為0.30米,現(xiàn)要將它改為無障礙通道(圖中EF所示的斜坡),如果斜坡EF的坡角為8°,求斜坡底部點F與臺階底部點A的距離AF.(精確到0.01米)
(備用數(shù)據(jù):tan8°=0.140,sin8°=0.139,cos8°=0.990)

查看答案和解析>>

同步練習冊答案