【題目】在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),若∠B=50°,則∠DAC的度數(shù)是______

【答案】40°

【解析】根據(jù)等腰三角形的性質(zhì)可得到AD是頂角的角平分線,再根據(jù)三角形內(nèi)角和定理不難求得頂角的度數(shù),最后根據(jù)角平分線的定義即可求解.

AB=AC,DBC中點(diǎn),

AD是∠BAC的平分線,

∵∠B=50°,

∴∠BAC=80°,

∴∠DAC=40°.

故答案為:40°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于線段AB的長(zhǎng)為半徑畫(huà)孤,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD,若△ADC的周長(zhǎng)為10,AB=7,則△ABC的周長(zhǎng)為( 。
A.7
B.14
C.17
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠1與∠2互余,∠2與∠3互補(bǔ),∠1=58°,則∠3=(
A.58°
B.148°
C.158°
D.32°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB,分別以A、B為圓心,大于線段AB長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)C、Q,連接CQ與AB相交于點(diǎn)D,連接AC,BC,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=2x2 , y=﹣2x2 , y=2x2+1共有的性質(zhì)是(
A.開(kāi)口向上
B.對(duì)稱軸都是y軸
C.都有最高點(diǎn)
D.頂點(diǎn)都是原點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形三邊長(zhǎng)分別為6 cm,8 cm,10 cm,那么它最短邊上的高為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(﹣1,y1)、B(2,y2)、C(﹣3,y3)在函數(shù)y=﹣2(x+1)2+3的圖象上,則y1、y2、y3的大小關(guān)系是(
A.y1<y2<y3
B.y1<y3<y2
C.y2<y3<y1
D.y3<y2<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)山M鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個(gè)箏形,其中AD=CD,AB=CB,在探究箏形的性質(zhì)時(shí),得到如下結(jié)論:①△ABD≌△CBD;②AC⊥BD;③四邊形ABCD的面積= ACBD,其中正確的結(jié)論有(

A.0個(gè)
B.1個(gè)
C..2個(gè)
D..3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案