如圖,已知點出發(fā),以1個單位長度/秒的速度沿軸向正方向運動,以為頂點作菱形,使點在第一象限內(nèi),且;以為圓心,為半徑作圓.設(shè)點運動了秒,求:

(1)點的坐標(用含的代數(shù)式表示);

(2)當點在運動過程中,所有使與菱形的邊所在直線相切的的值.

 

【答案】

解:(1)過軸于,

 

,

,

的坐標為

(2)①當相切時(如圖1),切點為,此時,

,,

②當,即與軸相切時(如圖2),則切點為,,

,則,

③當所在直線相切時(如圖3),設(shè)切點為,,

,

軸于,則

,

化簡,得,

解得,

,

所求的值是

【解析】(1)過軸于,利用三角函數(shù)求得OD、DC的長,從而求得點的坐標

⊙P與菱形OABC的邊所在直線相切,則可與OC相切;或與OA相切;或與AB相切,應分三種情況探討:①當圓P與OC相切時,如圖1所示,由切線的性質(zhì)得到PC垂直于OC,再由OA=+t,根據(jù)菱形的邊長相等得到OC=1+t,由∠AOC的度數(shù)求出∠POC為30°,在直角三角形POC中,利用銳角三角函數(shù)定義表示出cos30°=oc/op,表示出OC,

等于1+t列出關(guān)于t的方程,求出方程的解即可得到t的值;②當圓P與OA,即與x軸相切時,過P作PE垂直于OC,又PC=PO,利用三線合一得到E為OC的中點,OE為OC的一半,而OE=OPcos30°,列出關(guān)于t的方程,求出方程的解即可得到t的值;③當圓P與AB所在的直線相切時,設(shè)切點為F,PF與OC交于點G,由切線的性質(zhì)得到PF垂直于AB,則PF垂直于OC,由CD=FG,在直角三角形OCD中,利用銳角三角函數(shù)定義由OC表示出CD,即為FG,在直角三角形OPG中,利用OP表示出PG,用PG+GF表示出PF,根據(jù)PF=PC,表示出PC,過C作CH垂直于y軸,在直角三角形PHC中,利用勾股定理列出關(guān)于t的方程,求出方程的解即可得到t的值,綜上,得到所有滿足題意的t的值.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知點A從(1,0)出發(fā),以1個單位長度/秒的速度沿x軸向正方向運動,以O(shè),精英家教網(wǎng)A為頂點作菱形OABC,使點B,C在第一象限內(nèi),且∠AOC=60°;以P(0,3)為圓心,PC為半徑作圓.設(shè)點A運動了t秒,求:
(1)點C的坐標(用含t的代數(shù)式表示);
(2)當點A在運動過程中,所有使⊙P與菱形OABC的邊所在直線相切的t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點A,B分別在x軸和y軸上,且OA=OB=3
2
,點C的坐標是C(
7
2
2
,
7
2
2
)
,AB與OC相交于點G.點P從O出發(fā)以每秒1個單位的速度從O運動到C,過P作直線EF∥AB分別交OA,OB于E,F(xiàn).解答下列問題:
(1)直接寫出點G的坐標和直線AB的解析式.
(2)若點P運動的時間為t,直線EF在四邊形OACB內(nèi)掃過的面積為s,請求出s與t的函數(shù)關(guān)系式;并求出當t為何值時,直線EF平分四邊形OACB的面積.
(3)設(shè)線段OC的中點為Q,P運動的時間為t,求當t為何值時,△EFQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年初中畢業(yè)升學考試(江蘇無錫卷)數(shù)學(帶解析) 題型:解答題

如圖,已知點出發(fā),以1個單位長度/秒的速度沿軸向正方向運動,以為頂點作菱形,使點在第一象限內(nèi),且;以為圓心,為半徑作圓.設(shè)點運動了秒,求:
(1)點的坐標(用含的代數(shù)式表示);
(2)當點在運動過程中,所有使與菱形的邊所在直線相切的的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點出發(fā),以1個單位長度/秒的速度沿軸向正方向運動,以為頂點作菱形,使點在第一象限內(nèi),且;以為圓心,為半徑作圓.設(shè)點運動了秒,求:

(1)點的坐標(用含的代數(shù)式表示);

(2)當點在運動過程中,所有使⊙與菱形的邊所在直線相切的的值.

查看答案和解析>>

同步練習冊答案