△ABC的三邊長為a,b,c.它的內(nèi)切圓半徑為r,則△ABC的面積為( )
A.(a+b+c)r
B.(a+b+c)r
C.2(a+b+c)r
D.無法確定
【答案】分析:首先根據(jù)題意畫出圖,觀察發(fā)現(xiàn)三角形ABC的內(nèi)切圓半徑,恰好是三角形ABC內(nèi)三個(gè)三角形的高,因而可以通過面積S△ABC=S△AOB+S△BOC+S△AOC來計(jì)算.
解答:解:S△ABC=S△AOB+S△BOC+S△AOC===,
故選B.
點(diǎn)評(píng):本題考查三角形的內(nèi)切圓與內(nèi)心.解決本題的關(guān)鍵是將求△ABC轉(zhuǎn)化為求S△AOB、S△BOC、S△AOC
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

△ABC的三邊長為
2
,
10
,2,△A′B′C′的兩邊為1和
5
,若△ABC∽△A′B′C′,則△A′B′C′的笫三邊長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、已知△ABC的三邊長為a,b,c,且滿足方程a2x2-(c2-a2-b2)x+b2=0,則方程根的情況是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面題的解題過程,已知△ABC的三邊長為a,b,c,且滿足
a2c2-b2c2
a4-b4
=1
,試判斷△ABC的形狀.
解:∵
a2c2-b2c2
a4-b4
=1
(A)
∴c2(a2-b2)=(a2+b2)(a2-b2)(B)
∴(a2-b2)(c2-a2-b2)=0(C)
∴(a2-b2)=0或c2-a2-b2=0(D)
∴a=b或c2=a2+b2(E)
∴△ABC是等腰直角三角形(F)
問:上述解題過程中是否正確?如果有錯(cuò)誤,你認(rèn)為是從哪一步開始錯(cuò)的?寫出該步的代號(hào)及錯(cuò)誤原因,并寫出正確解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

△ABC的三邊長為a,b,c.它的內(nèi)切圓半徑為r,則△ABC的面積為(  )
A、(a+b+c)r
B、
1
2
(a+b+c)r
C、2(a+b+c)r
D、無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長為,a,b,c,a和b滿足
a-1
+(b-2)2=0求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案