如圖,在四邊形ABCD中,AB=AD,AC與BD交于點(diǎn)E,∠ADB=∠ACB.
(1)求證:=;
(2)若AB⊥AC,AE:EC=1:2,F(xiàn)是BC中點(diǎn),求證:四邊形ABFD是菱形.
證明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,
又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;
(2)設(shè)AE=x,∵AE:EC=1:2,∴EC=2x,
由(1)得:AB2=AE•AC,∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,
∵F是BC中點(diǎn),∴BF=x,∴BF=AB=AD,
又∵∠ADB=∠ACB=∠ABD,∴∠ADB=∠CBD=30°,∴AD∥BF,
∴四邊形ABFD是平行四邊形,又∵AD=AB,∴四邊形ABFD是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖2,把⊿ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)35°,得到⊿A’B’C,A’B’交AC于點(diǎn)D,若∠A’DC=90°,則∠A=
。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)線(xiàn)段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線(xiàn)EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線(xiàn)EF的解析式;
(2)求△OEF的面積;
(3)請(qǐng)結(jié)合圖象直接寫(xiě)出不等式k2x+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
將兩個(gè)斜邊長(zhǎng)相等的三角形紙片如圖①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1,如圖②,連接D1B,則∠E1D1B的度數(shù)為( 。
A.10° B. 20° C. 7.5° D. 15°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB是半圓的直徑,點(diǎn)O為圓心,OA=5,弦AC=8,OD⊥AC,垂足為E,交⊙O于D,連接BE.設(shè)∠BEC=α,則sinα的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
“絲綢之路”經(jīng)濟(jì)帶首個(gè)實(shí)體平臺(tái)——中哈物流合作基地在我市投入使用,其最大裝卸能力達(dá)410 000標(biāo)箱,其中“410 000”用科學(xué)計(jì)數(shù)法表示為
A.0.41×106 B. 4.1×105 C.41×104 D.4.1×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,有一矩形紙片ABCD,AB=8,AD=17,將此矩形紙片折疊,使頂點(diǎn)A落在BC邊的A′處,折痕所在直線(xiàn)同時(shí)經(jīng)過(guò)邊AB、AD(包括端點(diǎn)),設(shè)BA′=x,則x的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com