精英家教網 > 初中數學 > 題目詳情

拋物線y=5(x-1)2向________平移________個單位后可得到拋物線y=5(x-1)2+3.

上    3
分析:找到兩個拋物線的頂點,根據拋物線的頂點即可判斷是如何平移得到.
解答:原拋物線的頂點為(1,0),新拋物線的頂點為(1,3),
∴是拋物線y=5(x-1)2向上平移3個單位后可得到拋物線y=5(x-1)2+3.
點評:討論兩個二次函數的圖象的平移問題,只需看頂點坐標是如何平移得到的即可.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,直線y=
4
3
x-4與x軸交于點A,與y軸交于點C,已知二次函數y=
4
3
x2+bx+c的圖象經過點精英家教網A和C,和x軸的另一個交點為B.
(1)求該二次函數的關系式;
(2)直接寫出該拋物線的對稱軸及頂點M的坐標;
(3)求四邊形ABCM的面積S.

查看答案和解析>>

科目:初中數學 來源: 題型:

求過(-1,0),(3,0),(1,-5)三點的拋物線的解析式,并畫出該拋物線.

查看答案和解析>>

科目:初中數學 來源: 題型:

拋物線y=(k2-2)x2-4kx+m的對稱軸是直線x=2,且它的最低點在直線y=-2x+2上,求:
(1)函數解析式;
(2)若拋物線與x軸交點為A、B與y軸交點為C,求△ABC面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知拋物線C1:y=x2-2x的圖象如圖所示,把C1的圖象沿y軸翻折,得到拋物線C2的圖象,拋物線C1與拋物線C2的圖象合稱圖象C3
(1)求拋物線C1的頂點A坐標,并畫出拋物線C2的圖象;
(2)若直線y=kx+b與拋物線y=ax2+bx+c(a≠0)有且只有一個交點時,稱直線與拋物線相切.若直線y=x+b與拋物線C1相切,求b的值;
(3)結合圖象回答,當直線y=x+b與圖象C3有兩個交點時,b的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,一單桿高2.2m,兩立柱之間的距離為1.6m,將一根繩子的兩端栓于立柱與鐵杠結合處,繩子自然下垂呈拋物線狀.
(1)一身高0.7m的小孩站在離立柱0.4m處,其頭部剛好觸上繩子,求繩子最低點到地面的距離;
(2)為供孩子們打秋千,把繩子剪斷后,中間系上一塊長為0.4米的木板,除掉系木板用去的繩子后,兩邊的繩子正好各為2米,木板與地面平行,求這時木板到地面的距離.(供選用數據:
3.36
≈1.8,
3.64
≈1.9,
4.39
≈2.1)
精英家教網

查看答案和解析>>

同步練習冊答案