【題目】如圖,矩形ABCD中,AB=6,BC=8,EAB上一點,將△BCE沿CE翻折至△FCE,EFAD相交于點G,且AG=FG,則線段AE的長為______

【答案】

【解析】根據(jù)折疊的性質得到∠F=B=A=90°,BE=EF,根據(jù)全等三角形的性質得到FH=AE,GF=AG,得到AH=BE=EF,設AE=x,則AH=BE=EF=6-x,根據(jù)勾股定理即可得到結論.

∵將CBE沿CE翻折至CFE,

∴∠F=B=A=90°,BE=EF,

AGEFGH中,

∴△AGE≌△FGH,

FH=AE,GF=AG,

AH=BE=EF,

AE=x,則AH=BE=EF=6-x,

DH=x+2,CH=8-x,

CD2+DH2=CH2

62+(2+x)2=(8-x)2,

x=,

AE=

故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點D,BD=8cm.點M從點A出發(fā),沿AC的方向勻速運動,同時直線PQ由點B出發(fā),沿BA的方向勻速運動,運動過程中始終保持PQ∥AC,直線PQ交AB于點P、交BC于點Q、交BD于點F.連接PM,設運動時間為t秒(0<t≤5).線段CM的長度記作y , 線段BP的長度記作y , y和y關于時間t的函數(shù)變化情況如圖所示.

(1)由圖2可知,點M的運動速度是每秒 cm,當t為何值時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是;
(2)設四邊形PQCM的面積為ycm2 , 求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使S四邊形PQCM= SABC?若存在,求出t的值;若不存在,說明理由;
(4)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市從今年11日起調整居民用水價格,每立方米水費上漲,小麗家去年12月的水費是15,而今年7月的水費則是30.已知小麗家今年7月的用水量比去年12月的用水量多5m3,求該市今年居民用水的價格.請表述出此題的主要等量關系,(寫出一個即可)_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,BE=CE,MN=1,線段MN的兩端點在CD、AD上滑動,當DM為 時,△ABE與以D、M、N為頂點的三角形相似.(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點 (不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且 .下列結論: ①△ADE∽△ACD;
②當BD=6時,△ABD與△DCE全等;
③△DCE為直角三角形時,BD為8或
④CD2=CECA.
其中正確的結論是(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC、BD交于點O,BE平分∠ABCAC于點F,交AD于點E,且∠DBF=15°,求證:(1AO=AE; (2)FEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國際無煙日之際,小敏同學就一批公眾對在餐廳吸煙所持的三種態(tài)度(徹底禁煙、建立吸煙室、其他)進行了調查,并把調查結果繪制成如圖①,②的統(tǒng)計圖.請根據(jù)下面圖中的信息回答下列問題:

(1)被調查者中,不吸煙者中贊成徹底禁煙的人數(shù)有________人;

(2)本次抽樣調查的樣本容量為__________;

(3)被調查者中,希望建立吸煙室的人數(shù)有_________人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:如圖,點A、B在數(shù)軸上分別表示有理數(shù)a、b,則A、B兩點之間的距離可以表示為|a﹣b|.

根據(jù)閱讀材料與你的理解回答下列問題:

(1)數(shù)軸上表示3與﹣2的兩點之間的距離是   .

(2)數(shù)軸上有理數(shù)x與有理數(shù)7所對應兩點之間的距離用絕對值符號可以表示為  .

(3)代數(shù)式|x+8|可以表示數(shù)軸上有理數(shù)x與有理數(shù)   所對應的兩點之間的距離;若|x+8|=5,則x=      .

(4)求代數(shù)式|x+1008|+|x+504|+|x﹣1007|的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知線段AB=20cm,CD=2cm,線段CD在線段AB上運動,E、F分別是ACBD的中點.

(1)若AC=4cm,則EF=_________cm.

(2)當線段CD在線段AB上運動時,試判斷EF的長度是否發(fā)生變化?如果不變請求出EF的長度,如果變化,請說明理由.

(3)我們發(fā)現(xiàn)角的很多規(guī)律和線段一樣,如圖②已知內部轉動,OE、OF分別平分,則、有何關系,請直接寫出_______________________.

查看答案和解析>>

同步練習冊答案