如圖,點B,C,E,在同一直線上,點A,D在直線CE同側(cè),AB=AC,EC=ED,∠BAC=∠CED=60°,AE與BD交于點F,AC與BD交于點M,DC與AE交于N,則:
(1)△BCD≌△______;
(2)∠AFB=______(度);
(3)△CMD≌△______.

證明:(1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,
∴△ABC、△DCE為等邊三角形,
∴BC=AC,CD=CE,∠BCD=∠ACE,
∴△BCD≌△ACE;
(2)∵△BCD≌△ACE,
∴∠CBD=∠CAE,
∵∠ABM+∠CBM=60°,
∴∠FAM+∠ABM=60°,
在△ABF中,∠AFB=180°-(∠FAM+∠ABM)-∠BAC,
∴∠AFB=60°;
(3)∵△BCD≌△ACE,∴∠BDC=∠AEC,
∵點B,C,E,在同一直線上,∴∠MCD=60°,
在△CMD和△CNE中,,
∴△CMD≌△CNE.
故答案為ACE,60,CNE.
分析:(1)由AB=AC,EC=ED,∠BAC=∠CED=60°,可得△ABC、△DCE為等邊三角形,則BC=AC,CD=CE,∠BCD=∠ACE,則△BCD≌△ACE;
(2)由△BCD≌△ACE,得∠CBD=∠CAE,根據(jù)∠ABM+∠CBM=60°,得∠FAM+∠ABM=60°,在△ABF中,∠AFB=180°-(∠FAM+∠ABM)-∠BAC=60°;
(3)由△BCD≌△ACE,得∠BDC=∠AEC,再由點B,C,E,在同一直線上,得∠MCD=60°,可證明△CMD≌△CNE.
點評:本題考查了全等三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì),是基礎(chǔ)知識要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在數(shù)軸上,它們所對應(yīng)的數(shù)分別是-4、
2x+23x-1
,且點A、B關(guān)于原點O對稱,求x的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A為⊙O直徑CB延長線上一點,過點A作⊙O的切線AD,切點為D,過點D作DE⊥AC,垂足為F,連接精英家教網(wǎng)BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,試求CE的長.
(3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點A的坐標(biāo)為(2
2
,0
),點B在直線y=-x上運動,當(dāng)線段AB最短時,點B的坐標(biāo)為( 。
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在線段MN上,則圖中共有
 
條線段.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點O到直線l的距離為3,如果以點O為圓心的圓上只有兩點到直線l的距離為1,則該圓的半徑r的取值范圍是
2<r<4

查看答案和解析>>

同步練習(xí)冊答案