【題目】如圖所示,四邊形EFGH是由矩形ABCD的外角平分線圍成的. 求證:四邊形EFGH是正方形.

【答案】證明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分線, ∴∠BAE=∠ABE=45°.
∴∠E=90°.
同理,∠F=∠G=90°.
∴四邊形EFGH為矩形.
∵AD=BC,∠HAD=∠HDA=∠FBC=∠FCB=45°,
∴△ADH≌△BCF(AAS).
∴AH=BF.
又∵∠EAB=∠EBA,
∴AE=BE.
∴AE+AH=EB+BF,即EH=EF.
∴矩形EFGH是正方形
【解析】由于四邊形EFGH是由矩形ABCD的外角平分線圍成,故先求出相關(guān)角的度數(shù),再根據(jù)正方形的判定定理即可證得.
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)和正方形的判定方法的相關(guān)知識(shí)點(diǎn),需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等;先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:x2﹣36=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),DB點(diǎn)關(guān)于AC的對(duì)稱點(diǎn),反比例函數(shù)y= 的圖象經(jīng)過D點(diǎn).

(1)證明四邊形ABCD為菱形;

(2)求此反比例函數(shù)的解析式;

(3)已知在y=的圖象x>0)上一點(diǎn)N,y軸正半軸上一點(diǎn)M,且四邊形ABMN是平行四邊形,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾何學(xué)中,有點(diǎn)動(dòng)成_____________,線動(dòng)成______________,_________________動(dòng)成體的原理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC= , 若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠BCD=120°,分別延長(zhǎng)DC、BC到點(diǎn)E,F(xiàn),使得△BCE和△CDF都是正三角形.

(1)求證:AE=AF;

(2)求∠EAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)Bx軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,能表示yx的函數(shù)關(guān)系的圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2bxcxy的值如下表:( )

x

0.10

0.11

0.12

0.13

0.14

y

-5.6

-3.1

-1.5

0.9

1.8

ax2bxc=0的一個(gè)根的范圍是( )

A.0.10<x<0.11B.0.11<x<0.12C.0.12<x<0.13D.0.13<x<0.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在RtABC中,ACB=90°,點(diǎn)D為斜邊AB的中點(diǎn),BC=6,CD=5,過點(diǎn)A作AEAD且AE=AD,過點(diǎn)E作EF垂直于AC邊所在的直線,垂足為點(diǎn)F,連接DF,請(qǐng)你畫出圖形,并直接寫出線段DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案