.已知:正方形ABCD內接于⊙O,點P是⊙O上不同于點B、C的任意一點,則∠BPC的度數(shù)是________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解與應用:
如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試利用上述結論求出FM+FN的長.
(2)類比與推理:
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內任一點”,即:
已知等邊△ABC內任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(3)拓展與延伸:
若正n邊形A1A2…An,內部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、已知在正方形網(wǎng)格中,每個小方格都是邊長為1的正方形,A、B兩點在小方格的頂點上,位置如圖所示,點C也在小方格的頂點上,且△ABC為等腰三角形,則點C的個數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•南通二模)如圖,已知在Rt△ABC中,AB=AC=2,在△ABC內作第一個內接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內作第二個內接正方形HIKJ;再取線段KJ的中點Q,在△QHI內作第三個內接正方形…依次進行下去,則第n個內接正方形的邊長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知在正方形網(wǎng)格上建立的平面直角坐標系中,△ABC的位置如圖所示
(1)將△ABC繞點C順時針方向旋轉90°后得△A′B′C′
①直接寫出B點的對應點B'的坐標;
②求B點旋轉到點B'所經(jīng)過的路線長(結果保留π)
(2)在正方形網(wǎng)格中,每個小正方形的頂點稱為格點,在圖中確定格點D,并畫出以A、B、C、D為頂點的四邊形,使其為中心對稱圖形(畫一個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料,解答問題.
已知:銳角△ABC,如圖,求作:正方形DEFG,使D、E落在BC邊上,F(xiàn)、G分別落在AC、AB邊上.
作法:(1)畫一個有三個頂點落在△ABC兩邊上的正方形D1、E1、F1、G1(如圖所示);
(2)連接BF,并延長交AC于點F;
(3)過點F作EF⊥BC于點E;
(4)過F作FG∥BC,交AB于點G;
(5)過點G作GD⊥BC于點D;則四邊形DEFG即為所求作的正方形.
問題:(1)說明上述所求作四邊形DEFG為正方形的理由.
(2)在△ABC中,如果BC=120,BC邊上的高為80,求上述正方形DEFG的邊長.
(3)若把(2)中的正方形DEFG改為矩形DEFG,且GF=
12
DG,其他條件不變,此時,GF是多少?

查看答案和解析>>

同步練習冊答案