如圖,已知平行四邊形ABCD中,E為AD的中點,CE的延長線交BA的延長線于點F.
(1)求證:CD=FA;
(2)若使∠F=∠BCF,平行四邊形ABCD的邊長之間還需再添加一個什么條件?請你補上這個條件,并進行證明(不要再增添輔助線).

(1)證明:∵四邊形ABCD是平行四邊形,
∴CD∥AB.
又∵CE的延長線交BA的延長線于點F,
∴∠CDA=∠DAF.
∵E是AD中點,
∴DE=AE.
∵∠CED=∠AEF,
∴△CDE≌△AEF.
∴CD=AF.

(2)要使∠F=∠BCF,需平行四邊形ABCD的邊長之間是2倍的關系,即BC=2AB,
證明:∵由(1)知,△CED≌△FEA,
∴CD=AF.
又∵四邊形ABCD是平行四邊形,
∴CD=AB.
∴AB=AF,即BF=2AB.
∵BC=2AB.
∴BF=BC,
∴∠F=∠BCF.
分析:第(1)問根據(jù)平行四邊形的性質,-就可證明CD∥AB,∠CDA=∠DAF,又已知DE=AE,∠CED=∠AEF,符合全等三角形的判定中的ASA,即證△CDE≌△AEF,所以CD=AF.
第(2)問在第(1)問的基礎上,若使∠F=∠BCF,逆推就必須BC=BF,繼而推出BC=2BA,即為所求.
點評:本題考查了平行四邊形的性質和全等三角形的判定的綜合運用,也是基礎題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數(shù)y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標分別為x1,x2,且x1>0,x2>0,正方形AB精英家教網(wǎng)CD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設
CGCB
=k
,求sin∠E和k.
((2),(3)的結果都用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知平行四邊形ABCD的對角線AC,BD相交于點O,BD繞點O順時針旋轉交AB,DC于E,F(xiàn).
(1)證明:四邊形BFDE是平行四邊形;
(2)BD繞點O順時針旋轉
 
度時,平行四邊形BFDE為菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知平行四邊形ABCD中,P是對角線BD上的一點,過P點作MN∥AD,EF∥CD,分別精英家教網(wǎng)交AB、CD、AD、BC于M、N、E、F,設a=PM•PE,b=PN•PF.
(1)請判斷a與b的大小關系,并說明理由;
(2)當
BP
PD
=2
時,求
S平行四邊形PEAM
S△ABD
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,已知平行四邊形ABCD.
(1)用直尺和圓規(guī)作出么ABC的平分線BE,交AD的延長線于點E,交DC于點F(保留作圖痕跡,不寫作法);
(2)求證:△ABE是等腰三角形;
(3)在(1)中所得圖形中,除△ABE外,請你寫出其他的等腰三角形.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知平行四邊形ABCD,作DE⊥AB,垂足為E,把三角形AED沿AB方向平移AB長個單位長度.
(1)作出平移后的圖形;
(2)經(jīng)過這樣的平移后,原來的圖形變成了什么圖形?
(3)這兩個圖形的面積相等嗎?只需給出答案,不必說明理由.

查看答案和解析>>

同步練習冊答案