(2013•江東區(qū)模擬)如圖,△ABC的角平分線AD交BC于點(diǎn)D,點(diǎn)E、F分別在AB、AC上,且EF∥BC,記∠AEF=α,∠ADC=β,∠ACB的補(bǔ)角∠ACG為γ,則α、β、γ的關(guān)系是( 。
分析:根據(jù)平行線得出∠B=α,求出∠BAC=2∠1,根據(jù)三角形外角性質(zhì)得出γ=α+2∠1,β=α+∠1,即可求出答案.
解答:解:∵AD平分∠BAC,
∴∠1=∠2,
∵EF∥BC,
∴∠B=∠AEF=α,
∴γ=α+2∠1,
∵β=α+∠1,
∴α=β-∠1,
∴γ=α+2(β-∠1),
即α=2β-γ,
故選B.
點(diǎn)評(píng):本題考查了平行線性質(zhì)和三角形外角性質(zhì)的應(yīng)用,關(guān)鍵是得出γ=α+2∠1,β=α+∠1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江東區(qū)模擬)以下四個(gè)標(biāo)志分別表示“綠色食品、回收、節(jié)能、節(jié)水”,其中屬于軸對(duì)稱圖形的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江東區(qū)模擬)一個(gè)不透明的袋子中放有2個(gè)紅球,2個(gè)白球(紅球和白球的形狀、材質(zhì)完全相同),從中任意摸出2個(gè)球,恰好是一個(gè)紅球、一個(gè)白球的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江東區(qū)模擬)已知:如圖,點(diǎn)A(-4,0),B(-1,0),將線段AB平移后得到線段CD,點(diǎn)A的對(duì)應(yīng)點(diǎn)C恰好落在y軸上,且四邊形ABDC的面積為9,則四邊形ABDC的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江東區(qū)模擬)如圖,拋物線y=
1
4
x2-m2(m>0)與x軸相交于點(diǎn)A、C,與y軸相交于點(diǎn)P,連結(jié)PA、PC,過(guò)點(diǎn)A畫PC的平行線分別交y軸和拋物線于點(diǎn)B、C1,連結(jié)CB并延長(zhǎng)交拋物線于點(diǎn)A1,在過(guò)點(diǎn)A1畫AC1的平行線分別交y軸和拋物線于點(diǎn)B1、C2,連結(jié)C1B1并延長(zhǎng)交拋物線于點(diǎn)A2,…,依次得到四邊形,記四邊形AnBnCnBn-1的面積為Sn
(1)求證:四邊形ABCP是菱形.
(2)設(shè)∠A1B1C1=a,且90°<a<120°,求m的取值范圍.
(3)當(dāng)m=1時(shí),
①填表:
序號(hào) S1 S2 S3 Sn
四邊形的面積
②是否存在2個(gè)四邊形,他們的面積Sp、Sq滿足:Sp×Sq=214(p<q)?若存在,求p、q的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案