【題目】如圖,拋物線y=ax2+2ax+1與x軸僅有一個公共點A,經(jīng)過點A的直線交該拋物線于點B,交y軸于點C,且點C是線段AB的中點.
(1)求這條拋物線對應(yīng)的函數(shù)解析式;
(2)求直線AB對應(yīng)的函數(shù)解析式.
【答案】
(1)
解:∵拋物線y=ax2+2ax+1與x軸僅有一個公共點A,
∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,
∴拋物線解析式為y=x2+2x+1;
(2)
解:∵y=(x+1)2,
∴頂點A的坐標為(﹣1,0),
∵點C是線段AB的中點,
即點A與點B關(guān)于C點對稱,
∴B點的橫坐標為1,
當x=1時,y=x2+2x+1=1+2+1=4,則B(1,4),
設(shè)直線AB的解析式為y=kx+b,
把A(﹣1,0),B(1,4)代入得 ,解得 ,
∴直線AB的解析式為y=2x+2
【解析】(1)利用△=b2﹣4ac=0時,拋物線與x軸有1個交點得到4a2﹣4a=0,然后解關(guān)于a的方程求出a,即可得到拋物線解析式;(2)利用點C是線段AB的中點可判斷點A與點B的橫坐標互為相反數(shù),則可以利用拋物線解析式確定B點坐標,然后利用待定系數(shù)法求直線AB的解析式.本題考查了拋物線與x軸的交點:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2﹣4ac決定拋物線與x軸的交點個數(shù):△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.也考查了利用待定系數(shù)法求函數(shù)解析式.
【考點精析】利用確定一次函數(shù)的表達式和拋物線與坐標軸的交點對題目進行判斷即可得到答案,需要熟知確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),計劃開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù).
(2)將條形統(tǒng)計圖補充完整.
(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請在下列四個關(guān)系中,選出兩個恰當?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】希望中學(xué)計劃從榮威公司買A、B兩種型號的小黑板,經(jīng)治談,購買一塊A型小黑板比購買一塊B型小黑板多用20元,且購買5塊A型小黑板和購買4塊B型小黑板共需820元.
求購買一塊A型小黑板,一塊B型小黑板各需要多少元?
根據(jù)希望中學(xué)實際情況,需從榮威公司買A,B兩種型號的小黑板共60塊,要求購買A、B兩種型號的小黑板的總費用不超過5240元,并且購買A型小黑板的數(shù)量應(yīng)大于購買A、B兩種型號的小黑板總數(shù)量的,請你通過計算,求出希望中學(xué)從榮威公司買A、B兩種型號的小黑板有哪幾種方案?并說明哪種方案更節(jié)約資金?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( 。
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.
(1)求證:AE=CF;
(2)若∠ABE=55°,求∠EGC的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料;
課堂上,老師設(shè)計了一個活動:將一個4×4的正方形網(wǎng)格沿著網(wǎng)格線劃分成兩部分(分別用陰影和空白表示),使得這兩部分圖形是全等的,請同學(xué)們嘗試給出劃分的方法.約定:如果兩位同學(xué)的劃分結(jié)果經(jīng)過旋轉(zhuǎn)、翻折后能夠重合,那么就認為他們的劃分方法相同.
小方、小易和小紅分別對網(wǎng)格進行了劃分,結(jié)果如圖①、圖②、圖③所示.
小方說:“我們?nèi)齻人的劃分方法都是正確的,但是將小紅的整個圖形(圖③)逆時針旋轉(zhuǎn)90后得到的劃分方法與我的劃分方法(圖①)是一樣的,應(yīng)該認為是同一種方法,而小易的劃分方法與我的不同,”
老師說:“小方說得對.”
完成下列問題:
(1)圖④的劃分方法是否正確?
(2)判斷圖⑤的劃分方法與圖②小易的劃分方法是否相同,并說明你的理由.
(3)請你再想出一種與已有方法不同的劃分方法,使之滿足上述條件,并在圖⑥中畫出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,把一條拋物線先向上平移3個單位長度,然后繞原點選擇180°得到拋物線y=x2+5x+6,則原拋物線的解析式是( 。
A.y=﹣(x﹣ )2﹣
B.y=﹣(x+ )2﹣
C.y=﹣(x﹣ )2﹣
D.y=﹣(x+ )2+
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com