作業(yè)寶如圖,是二次函數(shù)數(shù)學(xué)公式和一次函數(shù)y2=mx+n的圖象,觀察圖象,寫出y1>y2時(shí)x的取值范圍是


  1. A.
    -2<x<1
  2. B.
    x<-2或x>1
  3. C.
    x>-2
  4. D.
    x<1
B
分析:根據(jù)函數(shù)圖象寫出二次函數(shù)圖象在一次函數(shù)圖象上方部分的x的取值范圍即可.
解答:由圖可知,y1>y2時(shí)x的取值范圍是x<-2或x>1.
故選B.
點(diǎn)評(píng):本題考查了二次函數(shù)與不等式,此類題目,利用數(shù)形結(jié)合的思想求解,仔細(xì)觀察圖形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、某電子科技公司開發(fā)一種新產(chǎn)品.產(chǎn)品投產(chǎn)上市一年來,公司經(jīng)歷了由初期的虧損到后來逐步盈利的過程(公司對(duì)經(jīng)營的盈虧情況每月最后一天結(jié)算1次).公司前12個(gè)月累積獲得的利潤y(萬元)與銷售時(shí)間第x(月)之間的函數(shù)關(guān)系(即前x個(gè)月的利潤總和y與x之間的關(guān)系)對(duì)應(yīng)的點(diǎn)都在如圖所示的圖象上.該圖象是某二次函數(shù)y=a(x-h)2+k圖象的一部分,點(diǎn)A為拋物線的頂點(diǎn),且點(diǎn)A,B,C的橫坐標(biāo)分別為4,10,12,點(diǎn)A,B的縱坐標(biāo)分別為-16,20.
(1)求前12個(gè)月該公司累積獲得的利潤y(萬元)與時(shí)間第x(月)之間的函數(shù)關(guān)系式;
(2)分別求出前9個(gè)月公司累積獲得的利潤和10月份一個(gè)月內(nèi)所獲得的利潤;
(3)在前12個(gè)月中,哪個(gè)月該公司一個(gè)月內(nèi)所獲得的利潤最多?最多利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•賀州)如圖所示,OM是一堵高為2.5米的圍墻截面的高,小明在圍墻內(nèi)投籃,籃球從點(diǎn)A處投出,卻投到了籃球框外,正好打在了斜靠在圍墻上的一根竹竿CD的點(diǎn)B處,籃球經(jīng)過的路線是二次函數(shù)y=ax2+bx+4圖象的一部分.現(xiàn)以O(shè)為原點(diǎn),垂直于OM的水平線為x軸,OM所在的直線為y軸,建立如圖所示的平面直角坐標(biāo)系,如果籃球不被竹竿擋住,籃球?qū)⑼ㄟ^圍墻外的點(diǎn)E,點(diǎn)E的坐標(biāo)為(-3,
72
),點(diǎn)B和點(diǎn)E關(guān)于此二次函數(shù)圖象的對(duì)稱軸對(duì)稱,若tan∠OCM=1.(圍墻的厚度忽略不計(jì),圍墻內(nèi)外水平面高度一樣)
(1)求竹竿CD所在的直線的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)在圍墻外距圍墻底部O點(diǎn)5.5米處有一個(gè)大池塘,如果籃球投出后不被竹竿擋住,籃球會(huì)不會(huì)直接落入池塘?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,
給出下列命題:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的兩根分別為-3和1;
⑤8a+c>0.其中正確的命題是
①③④⑤(答對(duì)一個(gè)得1分,答錯(cuò)一個(gè)倒扣一分)
①③④⑤(答對(duì)一個(gè)得1分,答錯(cuò)一個(gè)倒扣一分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于點(diǎn)A、點(diǎn)B,與y軸交于點(diǎn)C,且A、B兩點(diǎn)的坐標(biāo)分別是(4,0)、(0,-2),tan∠BCO=(1)求拋物線解析式;(2)點(diǎn)M為拋物線上一點(diǎn),若以MB為直徑的圓與直線BC相切于點(diǎn)B,求點(diǎn)M的坐標(biāo);(3) 如圖2,若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x的動(dòng)點(diǎn),是否存在以點(diǎn)P、Q、C、O為頂點(diǎn)且以O(shè)C為一邊的四邊形是直角梯形;如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說明理由.

【解析】(1)利用A、B兩點(diǎn)的坐標(biāo)和tan∠BCO=求拋物線解析式

(2)設(shè)點(diǎn)m(x,y),則由以MB為直徑的圓與直線BC相切于點(diǎn)B,說明了點(diǎn)B為直徑的一個(gè)端點(diǎn),另外,BC直線方程為y=2x+4,利用BM的中點(diǎn)就是圓心坐標(biāo),BM垂直于CB,因此聯(lián)立方程組可得M的坐標(biāo)

(3)假設(shè)存在以點(diǎn)P、Q、C、O為頂點(diǎn)且以O(shè)C為一邊的四邊形是直角梯形

則有幾種情況的一種直角為C,直角為P,直角為O,直角為Q的情況,那么分情況討論求解,利用一組對(duì)邊平行,一個(gè)角為直角,進(jìn)行求解

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰州市靖江外國語學(xué)校中考二模數(shù)學(xué)卷(解析版) 題型:解答題

如圖1,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于點(diǎn)A、點(diǎn)B,與y軸交于點(diǎn)C,且A、B兩點(diǎn)的坐標(biāo)分別是(4,0)、(0,-2),tan∠BCO=(1)求拋物線解析式;(2)點(diǎn)M為拋物線上一點(diǎn),若以MB為直徑的圓與直線BC相切于點(diǎn)B,求點(diǎn)M的坐標(biāo);(3) 如圖2,若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x的動(dòng)點(diǎn),是否存在以點(diǎn)P、Q、C、O為頂點(diǎn)且以O(shè)C為一邊的四邊形是直角梯形;如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說明理由.

【解析】(1)利用A、B兩點(diǎn)的坐標(biāo)和tan∠BCO=求拋物線解析式

(2)設(shè)點(diǎn)m(x,y),則由以MB為直徑的圓與直線BC相切于點(diǎn)B,說明了點(diǎn)B為直徑的一個(gè)端點(diǎn),另外,BC直線方程為y=2x+4,利用BM的中點(diǎn)就是圓心坐標(biāo),BM垂直于CB,因此聯(lián)立方程組可得M的坐標(biāo)

(3)假設(shè)存在以點(diǎn)P、Q、C、O為頂點(diǎn)且以O(shè)C為一邊的四邊形是直角梯形

則有幾種情況的一種直角為C,直角為P,直角為O,直角為Q的情況 ,那么分情況討論求解,利用一組對(duì)邊平行,一個(gè)角為直角,進(jìn)行求解

 

查看答案和解析>>

同步練習(xí)冊(cè)答案