(2005•梅州)如圖,已知C、D是雙曲線y=在第一象限分支上的兩點,直線CD分別交x軸、y軸于A、B兩點.設(shè)C(x1,y1)、D(x2,y2),連接OC、OD(O是坐標有點),若∠BOC=∠AOD=α,且tanα=,OC=
(1)求C、D的坐標和m的值;
(2)雙曲線上是否存在一點P,使得△POC和△POD的面積相等?若存在,給出證明,若不存在,說明理由.

【答案】分析:(1)過點C作CG⊥x軸于G,在直角△OCG中,已知tanα=,OC=,就可以求出CG,OQ的長,就得到C點的坐標.根據(jù)待定系數(shù)法得到反比例函數(shù)的解析式.過D作DH⊥x軸于H,則DH=y2,OH=x2,在Rt△ODH中,tanα=,∴,即y2=3x2,由x2y2=3解得DH的長,進而求出OH,得到D點的坐標.
(2)雙曲線上存在點P,使得S△POC=S△POD,這個點就是∠COD的平分線與雙曲線的交點,易證△POC≌△POD,則S△POC=S△POD
解答:解:(1)過點C作CG⊥x軸于G,
則CG=y1,OG=x1,
在Rt△OCG中,∠GCO=∠BOC=α,
∵tanα=,
,
即y1=3x1
又∵OC=,
∴x12+y12=10,
即x12+(3x12=10,
解得:x1=1或x1=-1(不合題意舍去)
∴x1=1,y1=3,
∴點C的坐標為C(1,3).
又點C在雙曲線上,可得:m=3,
過D作DH⊥x軸于H,則DH=y2,OH=x2
在Rt△ODH中,tanα=,

即x2=3y2,
又∵x2y2=3,
∴y2=1或y2=-1(不合舍去),
∴x2=3,y2=1,
∴點D的坐標為D(3,1);

(2)雙曲線上存在點P,使得S△POC=S△POD,
這個點就是∠COD的平分線與雙曲線的交點
∵點D(3,1),
∴OD=,
∴OD=OC,
∴點P在∠COD的平分線上,
則∠COP=∠POD,又OP=OP
∴△POC≌△POD,
∴S△POC=S△POD
點評:本題主要是根據(jù)勾股定理和三角函數(shù)的定義解決問題,通過它們把結(jié)論轉(zhuǎn)化為方程的問題來解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年廣東省梅州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•梅州)如圖,已知C、D是雙曲線y=在第一象限分支上的兩點,直線CD分別交x軸、y軸于A、B兩點.設(shè)C(x1,y1)、D(x2,y2),連接OC、OD(O是坐標有點),若∠BOC=∠AOD=α,且tanα=,OC=
(1)求C、D的坐標和m的值;
(2)雙曲線上是否存在一點P,使得△POC和△POD的面積相等?若存在,給出證明,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣東省梅州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•梅州)如圖,四邊形ABCD是矩形,O是它的中心,E、F是對角線AC上的點.
(1)如果______,則△DEC≌△BFA(請你填上能使結(jié)論成立的一個條件);
(2)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣東省河源市中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2005•梅州)如圖,Rt△ABC中,∠ACB=90°,AC=4,BA=5.P是AC上的動點(P不與A、C重合),設(shè)PC=x,點P到AB的距離為y.
(1)求y與x的函數(shù)關(guān)系式;
(2)試討論以P為圓心,半徑長為x的圓與AB所在直線的位置關(guān)系,并指出相應(yīng)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣東省河源市中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:填空題

(2005•梅州)如圖,扇子的圓心角為α,余下扇形的圓心角為β,為了使扇子的外形美觀,通常情況下α與β的比按黃金比例設(shè)計,若取黃金比為0.6,則α=    度.

查看答案和解析>>

同步練習(xí)冊答案