已知:如圖,直線y=-x+3與x軸、y軸分別交于B、C,拋物線y=-x2+bx+c經(jīng)過點(diǎn)B、C,點(diǎn)A是拋物精英家教網(wǎng)線與x軸的另一個(gè)交點(diǎn).
(1)求B、C兩點(diǎn)的坐標(biāo)和拋物線的解析式;
(2)若點(diǎn)P在線段BC上,且S△PAC=
12
S△PAB
,求點(diǎn)P的坐標(biāo).
分析:(1)根據(jù)直線y=-x+3可分別令x=0,y=0求出C,B兩點(diǎn)的坐標(biāo);把B,C兩點(diǎn)的坐標(biāo)分別代入拋物線y=-x2+bx+c
可求出b,c的值,從而求出函數(shù)的解析式.
(2)因?yàn)镻在線段BC上,所以可設(shè)P點(diǎn)坐標(biāo)為(x,-x+3),再利用三角形的面積公式及△ABC、△PAC、△PAB之間的關(guān)系即可求出x的值,從而求出P點(diǎn)坐標(biāo).
解答:解:(1)令x=0,則y=3,令y=0,則x=3,
故C(0,3)、B(3,0).
把兩點(diǎn)坐標(biāo)代入拋物線y=-x2+bx+c得,
c=3
-9+3b+3=0
,
解得
c=3
b=2

故拋物線的解析式為:y=-x2+2x+3;
精英家教網(wǎng)
(2)設(shè)P點(diǎn)坐標(biāo)為(x,-x+3),
∵C(0,3)
∴S△PAC=S△ABC-S△PAB=
1
2
S△PAB,
1
2
|AB|×3-
1
2
|AB|×(-x+3)=
1
2
×
1
2
|AB|×(-x+3),
解得x=1,
故P(1,2).
點(diǎn)評(píng):此題考查的是一次函數(shù)及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,屬比較簡單的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,直線y=
3
3
x+
3
與x軸、y軸分別交于A、B兩點(diǎn),⊙M經(jīng)過精英家教網(wǎng)原點(diǎn)O及A、B兩點(diǎn).
(1)求以O(shè)A、OB兩線段長為根的一元二方程;
(2)C是⊙M上一點(diǎn),連接BC交OA于點(diǎn)D,若∠COD=∠CBO,寫出經(jīng)過O、C、A三點(diǎn)的二次函數(shù)的解析式;
(3)若延長BC到E,使DE=2,連接EA,試判斷直線EA與⊙M的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•岳陽)已知:如圖,直線MN和⊙O切于點(diǎn)C,AB是⊙O的直徑,AE⊥MN,BF⊥MN且與⊙O交于點(diǎn)G,垂足分別是E、F,AC是⊙O的弦,
(1)求證:AB=AE+BF;
(2)令A(yù)E=m,EF=n,BF=p,證明:n2=4mp;
(3)設(shè)⊙O的半徑為5,AC=6,求以AE、BF的長為根的一元二次方程;
(4)將直線MN向上平行移動(dòng)至與⊙O相交時(shí),m、n、p之間有什么關(guān)系?向下平行移動(dòng)至與⊙O相離時(shí),m、n、p之間又有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直線y=kx+b經(jīng)過點(diǎn)A、B.
求:(1)這個(gè)函數(shù)的解析式;
(2)當(dāng)x=4時(shí),y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直線y=kx+b與x軸交于點(diǎn)A,且與雙曲線y=
m
x
交于點(diǎn)B(4,2)和點(diǎn)C(n,-4). 
(1)求直線y=kx+b和雙曲線y=
m
x
的解析式;
(2)根據(jù)圖象寫出關(guān)于x的不等式kx+b<
m
x
的解集;
(3)點(diǎn)D在直線y=kx+b上,設(shè)點(diǎn)D的縱坐標(biāo)為t(t>0).過點(diǎn)D作平行于x軸的直線交雙曲線y=
m
x
于點(diǎn)E.若△ADE的面積為
7
2
,請(qǐng)直接寫出所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直線a∥b,∠1=(2x+10)°,∠2=(3x-5)°,那么∠1=
80
80
°.

查看答案和解析>>

同步練習(xí)冊(cè)答案