如圖,⊙O過點(diǎn)B、C.圓心O在等腰直角△ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為   
【答案】分析:過O作OD⊥BC,由垂徑定理可知BD=CD=BC,根據(jù)△ABC是等腰直角三角形可知∠ABC=45°,故△ABD也是等腰直角三角形,BD=AD,再由OA=1可求出OD的長,在Rt△OBD中利用勾股定理即可求出OB的長.
解答:解:過O作OD⊥BC,
∵BC是⊙O的一條弦,且BC=6,
∴BD=CD=BC=×6=3,
∴OD垂直平分BC,又AB=AC,
∴點(diǎn)A在BC的垂直平分線上,即A,O及D三點(diǎn)共線,
∵△ABC是等腰直角三角形,
∴∠ABC=45°,
∴△ABD也是等腰直角三角形,
∴AD=BD=3,
∵OA=1,
∴OD=AD-OA=3-1=2,
在Rt△OBD中,
OB===
故答案為:
點(diǎn)評:本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O過點(diǎn)B、C.圓心O在等腰直角△ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為( 。
A、
10
B、2
3
C、3
2
D、
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,以點(diǎn)O為圓心,半徑為4的圓交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),點(diǎn)P為弧AC上的一動點(diǎn),延長CP交x軸于點(diǎn)E;連接PB,交OC于點(diǎn)F.
(1)若點(diǎn)F為OC的中點(diǎn),求PB的長;
精英家教網(wǎng)
(2)求CP•CE的值;
(3)如圖2,過點(diǎn)OH∥AP交PD于點(diǎn)H,當(dāng)點(diǎn)P在弧AC上運(yùn)動時,試問
APDH
的值是否保持不變;若不變,試證明,求出它的值;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O過點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,∠BAC=90°,OA=2,BC=8.則⊙O的半徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D是AC的中點(diǎn),F(xiàn)為邊AB上一動點(diǎn),AF=nBF,E為直線BC上一點(diǎn),且∠EDF=120°.
 
(1)如圖1,當(dāng)n=2時,求
CE
CD
=
1
3
1
3

(2)如圖2,當(dāng)n=
1
3
時,求證:CD=2CE;
(3)如圖3,過點(diǎn)D作DM⊥BC于M,當(dāng)
n=3
n=3
時,C點(diǎn)為線段EM的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖A,△ABC各角的平分線AD,BE,CF交于點(diǎn)O.
(1)試說明∠BOC=90°+
12
∠BAC;
(2)如圖B,過點(diǎn)O作OG⊥BC于G,試判斷∠BOD與∠COG的大小關(guān)系(大于,小于或等于),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案