【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點,DM與EN相交于點F.
(1)若△CMN的周長為15cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數(shù).
【答案】(1)、15cm;(2)、40°.
【解析】
試題分析:(1)、根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AM=CM,BN=CN,然后求出△CMN的周長=AB;(2)、根據(jù)三角形的內(nèi)角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根據(jù)等邊對等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的內(nèi)角和定理列式計算即可得解.
試題解析:(1)、∵DM、EN分別垂直平分AC和BC, ∴AM=CM,BN=CN,
∴△CMN的周長=CM+MN+CN=AM+MN+BN=AB, ∵△CMN的周長為15cm, ∴AB=15cm;
(2)、∵∠MFN=70°, ∴∠MNF+∠NMF=180°﹣70°=110°, ∵∠AMD=∠NMF,∠BNE=∠MNF,
∴∠AMD+∠BNE=∠MNF+∠NMF=110°, ∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,
∵AM=CM,BN=CN, ∴∠A=∠ACM,∠B=∠BCN, ∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分線,點O在AB上,⊙O經(jīng)過B,D兩點,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若AB=6,sin∠BAC=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市關(guān)心下一代工作委員會為了了解全 市七年級學(xué)生的視力狀況,從全市30 000名七年級學(xué)生中隨機抽取了500人進(jìn)行視力測試,發(fā)現(xiàn)其中視力不良的學(xué)生有100人,則可估計全市30 000名七年級學(xué)生中視力不良的約有( )
A. 100人 B. 500人 C. 6 000人 D. 15 000人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=3x2向左平移1個單位,再向下平移2個單位,所得到的拋物線是 ( )
A. y=3(x-1)2-2 B. y=3(x+1)2-2
C. y=3(x+1)2+2 D. y=3(x-1)2+2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com